Strong and fragile topological Dirac semimetals with higher-order Fermi arcs

被引:0
|
作者
Benjamin J. Wieder
Zhijun Wang
Jennifer Cano
Xi Dai
Leslie M. Schoop
Barry Bradlyn
B. Andrei Bernevig
机构
[1] Princeton University,Department of Physics
[2] Chinese Academy of Sciences,Beijing National Laboratory for Condensed Matter Physics and Institute of Physics
[3] University of Chinese Academy of Sciences,Department of Physics and Astronomy
[4] Stony Brook University,Center for Computational Quantum Physics
[5] The Flatiron Institute,Physics Department
[6] Hong Kong University of Science and Technology,Department of Chemistry
[7] Princeton University,Department of Physics and Institute for Condensed Matter Theory
[8] University of Illinois at Urbana-Champaign,Dahlem Center for Complex Quantum Systems and Fachbereich Physik
[9] Donostia International Physics Center,undefined
[10] Freie Universität Berlin,undefined
[11] Max Planck Institute of Microstructure Physics,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Dirac and Weyl semimetals both exhibit arc-like surface states. However, whereas the surface Fermi arcs in Weyl semimetals are topological consequences of the Weyl points themselves, the surface Fermi arcs in Dirac semimetals are not directly related to the bulk Dirac points, raising the question of whether there exists a topological bulk-boundary correspondence for Dirac semimetals. In this work, we discover that strong and fragile topological Dirac semimetals exhibit one-dimensional (1D) higher-order hinge Fermi arcs (HOFAs) as universal, direct consequences of their bulk 3D Dirac points. To predict HOFAs coexisting with topological surface states in solid-state Dirac semimetals, we introduce and layer a spinful model of an s–d-hybridized quadrupole insulator (QI). We develop a rigorous nested Jackiw–Rebbi formulation of QIs and HOFA states. Employing ab initio calculations, we demonstrate HOFAs in both the room- (α) and intermediate-temperature (α″) phases of Cd3As2, KMgBi, and rutile-structure (β′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \beta ^{\prime} $$\end{document}-) PtO2.
引用
收藏
相关论文
共 50 条
  • [1] Strong and fragile topological Dirac semimetals with higher-order Fermi arcs
    Wieder, Benjamin J.
    Wang, Zhijun
    Cano, Jennifer
    Dai, Xi
    Schoop, Leslie M.
    Bradlyn, Barry
    Bernevig, B. Andrei
    NATURE COMMUNICATIONS, 2020, 11 (01)
  • [2] Strong and Fragile Topological Dirac Semimetals with Higher-Order Fermi Arcs
    Department of Physics, Princeton University, Princeton
    NJ
    08544, United States
    不详
    100190, China
    不详
    100049, China
    不详
    NY
    11974, United States
    不详
    NY
    10010, United States
    不详
    不详
    NJ
    08544, United States
    不详
    IL
    61801-3080, United States
    不详
    20018, Spain
    不详
    14195, Germany
    不详
    06120, Germany
    arXiv,
  • [3] Generalization of the nested Wilson loop formalism in topological Dirac semimetals with higher-order Fermi arcs
    Zeng H.
    Duan W.
    Huang H.
    Physical Review Research, 2023, 5 (04):
  • [4] Classification of Dirac points with higher-order Fermi arcs
    Fang, Yuan
    Cano, Jennifer
    PHYSICAL REVIEW B, 2021, 104 (24)
  • [5] Entanglement signature of hinge arcs, Fermi arcs, and crystalline symmetry protection in higher-order Weyl semimetals
    Zhou, Yao
    Ye, Peng
    PHYSICAL REVIEW B, 2023, 107 (08)
  • [6] Fragility of Fermi arcs in Dirac semimetals
    Wu, Yun
    Jo, Na Hyun
    Wang, Lin-Lin
    Schmidt, Connor A.
    Neilson, Kathryn M.
    Schrunk, Benjamin
    Swatek, Przemyslaw
    Eaton, Andrew
    Bud'ko, S. L.
    Canfield, P. C.
    Kaminski, Adam
    PHYSICAL REVIEW B, 2019, 99 (16)
  • [7] Multipole higher-order topological semimetals
    Qi, Yajuan
    He, Zhaojian
    Deng, Ke
    Li, Jing
    Wang, Yuhua
    PHYSICAL REVIEW B, 2024, 109 (06)
  • [8] Higher-order topological Dirac superconductors
    Zhang, Rui-Xing
    Hsu, Yi-Ting
    Das Sarma, S.
    PHYSICAL REVIEW B, 2020, 102 (09)
  • [9] Non-Hermitian higher-order Dirac semimetals
    Ghorashi, Sayed Ali Akbar
    Li, Tianhe
    Sato, Masatoshi
    Hughes, Taylor L.
    PHYSICAL REVIEW B, 2021, 104 (16)
  • [10] Corner states in photonic higher-order Dirac semimetals
    Medina-Vazquez, Jose A.
    Gonzalez-Ramirez, Evelyn Y.
    Murillo-Ramirez, Jose G.
    PHYSICAL REVIEW A, 2023, 107 (05)