Targeting Aminoglycoside Acetyltransferase Activity of Mycobacterium tuberculosis (H37Rv) Derived Eis (Enhanced Intracellular Survival) Protein with Quercetin

被引:0
|
作者
Logesh Radhakrishnan
Rahul Dani
Irfan Navabshan
Shazia Jamal
Neesar Ahmed
机构
[1] B. S. Abdur Rahman Crescent Institute of Science & Technology,School of Life Sciences
[2] Indian Institute of Technology Madras,Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences
[3] BSA Crescent Institute of Science and Technology,School of Pharmacy
来源
The Protein Journal | 2024年 / 43卷
关键词
Enhanced Intracellular Survival (Eis); Aminoglycoside Acetyltransferase; Kanamycin A, Quercetin;
D O I
暂无
中图分类号
学科分类号
摘要
Eis (Enhanced intracellular survival) protein is an aminoglycoside acetyltransferase enzyme classified under the family – GNAT (GCN5-related family of N-acetyltransferases) secreted by Mycobacterium tuberculosis (Mtb). The enzymatic activity of Eis results in the acetylation of kanamycin, thereby impairing the drug’s action. In this study, we expressed and purified recombinant Eis (rEis) to determine the enzymatic activity of Eis and its potential inhibitor. Glide-enhanced precision docking was used to perform molecular docking with chosen ligands. Quercetin was found to interact Eis with a maximum binding affinity of -8.379 kcal/mol as compared to other ligands. Quercetin shows a specific interaction between the positively charged amino acid arginine in Eis and the aromatic ring of quercetin through π-cation interaction. Further, the effect of rEis was studied on the antibiotic activity of kanamycin A in the presence and absence of quercetin. It was observed that the activity of rEis aminoglycoside acetyltransferase decreased with increasing quercetin concentration. The results from the disk diffusion assay confirmed that increasing the concentration of quercetin inhibits the rEis protein activity. In conclusion, quercetin may act as a potential Eis inhibitor.
引用
收藏
页码:12 / 23
页数:11
相关论文
共 50 条
  • [21] BIOSYNTHESIS OF NUCLEIC ACID PURINES IN MYCOBACTERIUM TUBERCULOSIS H37RV
    MALATHI, VG
    RAMAKRISHNAN, T
    BIOCHEMICAL JOURNAL, 1966, 98 (02) : 594 - +
  • [22] A comprehensive update to the Mycobacterium tuberculosis H37Rv reference genome
    Poonam Chitale
    Alexander D. Lemenze
    Emily C. Fogarty
    Avi Shah
    Courtney Grady
    Aubrey R. Odom-Mabey
    W. Evan Johnson
    Jason H. Yang
    A. Murat Eren
    Roland Brosch
    Pradeep Kumar
    David Alland
    Nature Communications, 13 (1)
  • [23] Crystal Structure of Sulfotransferase from Mycobacterium tuberculosis H37Rv
    Kakuta, Yoshimitsu
    Tanaka, Shotaro
    Moriizumi, Yuuji
    Kimura, Makoto
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2005, 61 : C201 - C201
  • [24] STUDIES ON MECHANISM OF ISONIAZID RESISTANCE IN MYCOBACTERIUM TUBERCULOSIS H37RV
    SRIPRAKASH, KS
    RAMAKRISHNAN, T
    INDIAN JOURNAL OF BIOCHEMISTRY, 1968, 5 (04): : 185 - +
  • [25] NICOTINAMIDE-ADENINE NUCLEOTIDES OF MYCOBACTERIUM TUBERCULOSIS H37RV
    GOPINATHAN, KP
    SIRSI, M
    RAMAKRISHNAN, T
    BIOCHEMICAL JOURNAL, 1963, 87 (02) : 444 - &
  • [26] ISOLATION AND PURIFICATION OF SULFOLIPIDS OF MYCOBACTERIUM-TUBERCULOSIS, H37RV
    PRABHUDESAI, AV
    MALIK, U
    SUBRAHMANYAM, D
    KHULLER, GK
    INDIAN JOURNAL OF BIOCHEMISTRY & BIOPHYSICS, 1981, 18 (01): : 71 - 73
  • [27] Assessing the progress of Mycobacterium tuberculosis H37Rv structural genomics
    Fang, Zhuo
    van der Merwe, Ruben Gerhard
    Warren, Robin Mark
    Schubert, Wolf-Dieter
    van Pittius, Nicolaas Claudius Gey
    TUBERCULOSIS, 2015, 95 (02) : 131 - 136
  • [28] Learning from the genome sequence of Mycobacterium tuberculosis H37Rv
    Cole, ST
    FEBS LETTERS, 1999, 452 (1-2) : 7 - 10
  • [29] The multiple activities of polyphosphate kinase of Mycobacterium tuberculosis H37Rv
    Hwang, M. -R.
    Yoon, J. W.
    Park, S. -K.
    Kim, N. -I.
    Jung, H. -S.
    Kim, H. -Y.
    FEBS JOURNAL, 2008, 275 : 405 - 405
  • [30] Dehalogenation of haloalkanes by Mycobacterium tuberculosis H37Rv and other mycobacteria
    Jesenská, A
    Sedlácek, I
    Damborsky, J
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2000, 66 (01) : 219 - 222