Ultrasound image texture analysis for liver fibrosis stage diagnostics

被引:0
|
作者
A. V. Kvostikov
A. S. Krylov
U. R. Kamalov
机构
[1] Lomonosov Moscow State University,Laboratory of Mathematical Methods of Image Processing, Faculty of Computational Mathematics and Cybernetics
[2] Petrovsky National Research Center of Surgery,Laboratory of Ultrasonic Diagnosis
来源
关键词
Liver Fibrosis; Fibrosis Stage; Acoustic Radiation Force Impulse; Acoustic Radiation Force Impulse Imaging; Prin Cipal Component Analysis;
D O I
暂无
中图分类号
学科分类号
摘要
A comprehensive method of B-mode ultrasound image texture analysis for the determination of the liver fibrosis stage is suggested. The algorithm is based on the use of Rotation Forest and KNN classifiers for the texture classification. 720 textural characteristics were extracted using methods based on Laws’ masks analysis, co-occurrence matrix, gray level run-length matrix and statistical characteristics of the images. An optimal subset of 22 informative features was selected using correlation-based method. Testing the algorithm with liver images of 57 patients divided into 5 stages of fibrosis showed 72.7% classification accuracy for single regions of interest. In the case of entire image classification the fibrosis stage was correctly identified for the vast majority of cases.
引用
收藏
页码:273 / 278
页数:5
相关论文
共 50 条
  • [21] Ultrasound image texture processing for evaluating fatty liver in peripartal dairy cows
    Amin, V
    Bobe, G
    Young, J
    Ametaj, B
    Beitz, D
    [J]. MEDICAL IMAGING: 2001: IMAGE PROCESSING, PTS 1-3, 2001, 4322 : 1527 - 1533
  • [22] An ultrasound image-based deep multi-scale texture network for liver fibrosis grading in patients with chronic HBV infection
    Ruan, Dongsheng
    Shi, Yu
    Jin, Linfeng
    Yang, Qiao
    Yu, Wenwen
    Ren, Haotang
    Zheng, Weiyang
    Chen, Yongping
    Zheng, Nenggan
    Zheng, Min
    [J]. LIVER INTERNATIONAL, 2021, 41 (10) : 2440 - 2454
  • [23] COMPUTER-ASSISTED ULTRASOUND B-SCAN IMAGE TEXTURE ANALYSIS OF EXPERIMENTAL LIVER-TUMORS
    LAYER, G
    ZUNA, I
    LORENZ, A
    HABERKORN, U
    ZERBAN, H
    BANNASCH, P
    VANKAICK, G
    RATH, U
    [J]. FORTSCHRITTE AUF DEM GEBIETE DER RONTGENSTRAHLEN UND DER NEUEN BILDGEBENDEN VERFAHREN, 1989, 151 (04): : 443 - 448
  • [24] Acoustic Liver Biopsy Using Endoscopic Ultrasound Correlates With Fibrosis Stage on Standard Liver Biopsies
    Vegesna, Anil K.
    Nazir, Amer
    Tiwana, Mansoor I.
    Chung, Chan Y.
    Kane, Saul
    Thomas, Rebecca
    Miller, Larry S.
    [J]. GASTROINTESTINAL ENDOSCOPY, 2010, 71 (05) : AB234 - AB235
  • [25] Liver fibrosis - Clinics, diagnostics and management
    Wasmuth, H. E.
    Trautwein, C.
    [J]. INTERNIST, 2010, 51 (01): : 14 - 20
  • [27] Texture analysis of liver fibrosis microscopic images: a study on the effect of biomarkers
    Amin, Amr
    Mahmoud-Ghoneim, Doaa
    [J]. ACTA BIOCHIMICA ET BIOPHYSICA SINICA, 2011, 43 (03) : 193 - 203
  • [28] A new image analysis method for quantification of liver fibrosis
    Fernandez, A
    Castano, G
    Sookoian, S
    Lemberg, A
    Amante, M
    Parisi, C
    Perazzo, JC
    [J]. JOURNAL OF HEPATOLOGY, 2003, 38 : 216 - 216
  • [29] Texture Analysis of Supraspinatus Ultrasound Image for Computer Aided Diagnostic System
    Park, Byung Eun
    Jang, Won Seuk
    Yoo, Sun Kook
    [J]. HEALTHCARE INFORMATICS RESEARCH, 2016, 22 (04) : 299 - 304
  • [30] Deep Learning Convolutional Neural Networks for the Estimation of Liver Fibrosis Severity from Ultrasound Texture
    Treacher, Alex
    Beauchamp, Daniel
    Quadri, Bilal
    Fetzer, David
    Vij, Abhinav
    Yokoo, Takeshi
    Montillo, Albert
    [J]. MEDICAL IMAGING 2019: COMPUTER-AIDED DIAGNOSIS, 2019, 10950