An interior second derivative bound for solutions of Hessian equations

被引:0
|
作者
John Urbas
机构
[1] Centre for Mathematics and its Applications,
[2] School of Mathematical Sciences,undefined
[3] Australian National University,undefined
[4] Canberra ACT 0200,undefined
[5] Australia (e-mail: John.Urbas@maths.anu.edu.au) ,undefined
关键词
Mathematics Subject Classification (1991): 35J60, 35B65, 35B45;
D O I
暂无
中图分类号
学科分类号
摘要
In previous work we showed that weak solutions in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$W^{2,p}(\Omega)$\end{document} of the k-Hessian equation \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$F_k[u]=g(x)$\end{document} have locally bounded second derivatives if g is positive and sufficiently smooth and p > kn/2. Here we improve this result to p > k(n-1)/2, which is known to be sharp in the Monge-Ampère case k=n > 2.
引用
收藏
页码:417 / 431
页数:14
相关论文
共 50 条