Some interior regularity results for solutions of Hessian equations

被引:0
|
作者
John Urbas
机构
[1] Centre for Mathematics and its Applications,
[2] School of Mathematical Sciences,undefined
[3] Australian National University,undefined
[4] Canberra ACT 0200,undefined
[5] Australia (e-mail: John.Urbas@maths.anu.edu.au) ,undefined
关键词
Mathematics Subject Classification (1991): 35J60, 35B65, 35B45;
D O I
暂无
中图分类号
学科分类号
摘要
We prove monotonicity formulae related to degenerate k-Hessian equations which yield Morrey type estimates for certain integrands involving the second derivatives of the solution. In the special case k=2 we deduce that weak solutions in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $W^{2,p}(\Omega)$\end{document}, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $p>n-1$\end{document}, have locally Hölder continuous gradients. In the nondegenerate case we also show that weak solutions in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $W^{2,p}(\Omega)$\end{document}, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $p>kn/2$\end{document}, have locally bounded second derivatives.
引用
收藏
页码:1 / 31
页数:30
相关论文
共 50 条