Frames and Finite-Rank Integral Representations of Positive Operator-Valued Measures

被引:0
|
作者
Jean-Pierre Gabardo
Deguang Han
机构
[1] McMaster University,Department of Mathematics and Statistics
[2] University of Central Florida,Department of Mathematics
来源
关键词
Positive operator valued measures; Frames; Integral representations; Frames; Dilations; 42C15; 46C05; 47B10;
D O I
暂无
中图分类号
学科分类号
摘要
Discrete and continuous frames can be considered as positive operator-valued measures (POVMs) that have integral representations using rank-one operators. However, not every POVM has an integral representation. One goal of this paper is to examine the POVMs that have finite-rank integral representations. More precisely, we present a necessary and sufficient condition under which a positive operator-valued measure F:Ω→B(H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$F: \varOmega \to B(H)$\end{document} has an integral representation of the form F(E)=∑k=1m∫EGk(ω)⊗Gk(ω)dμ(ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ F(E) =\sum_{k=1}^{m} \int _{E} G_{k}(\omega )\otimes G_{k}(\omega )\, d \mu (\omega ) $$\end{document} for some weakly measurable maps Gk(1≤k≤m)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$G_{k}\ (1\leq k\leq m) $\end{document} from a measurable space Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\varOmega $\end{document} to a Hilbert space ℋ and some positive measure μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mu $\end{document} on Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\varOmega $\end{document}. Similar characterizations are also obtained for projection-valued measures. As special consequences of our characterization we settle negatively a problem of Ehler and Okoudjou about probability frame representations of probability POVMs, and prove that an integral representable probability POVM can be dilated to a integral representable projection-valued measure if and only if the corresponding measure is purely atomic.
引用
收藏
页码:11 / 27
页数:16
相关论文
共 50 条