Discrete and continuous frames can be considered as positive operator-valued measures (POVMs) that have integral representations using rank-one operators. However, not every POVM has an integral representation. One goal of this paper is to examine the POVMs that have finite-rank integral representations. More precisely, we present a necessary and sufficient condition under which a positive operator-valued measure F:Ω→B(H)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$F: \varOmega \to B(H)$\end{document} has an integral representation of the form
F(E)=∑k=1m∫EGk(ω)⊗Gk(ω)dμ(ω)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ F(E) =\sum_{k=1}^{m} \int _{E} G_{k}(\omega )\otimes G_{k}(\omega )\, d \mu (\omega ) $$\end{document} for some weakly measurable maps Gk(1≤k≤m)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$G_{k}\ (1\leq k\leq m) $\end{document} from a measurable space Ω\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\varOmega $\end{document} to a Hilbert space ℋ and some positive measure μ\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\mu $\end{document} on Ω\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\varOmega $\end{document}. Similar characterizations are also obtained for projection-valued measures. As special consequences of our characterization we settle negatively a problem of Ehler and Okoudjou about probability frame representations of probability POVMs, and prove that an integral representable probability POVM can be dilated to a integral representable projection-valued measure if and only if the corresponding measure is purely atomic.
机构:
Indian Stat Inst, Bangalore Ctr, Stat Math Unit, Bengaluru 560059, Karnataka, IndiaIndian Stat Inst, Bangalore Ctr, Stat Math Unit, Bengaluru 560059, Karnataka, India
Krishna, K. Mahesh
Johnson, P. Sam
论文数: 0引用数: 0
h-index: 0
机构:
Natl Inst Technol Karnataka, Dept Math & Computat Sci, Surathkal 575025, Mangaluru, IndiaIndian Stat Inst, Bangalore Ctr, Stat Math Unit, Bengaluru 560059, Karnataka, India
机构:
Russian Acad Sci, Steklov Math Inst, ul Gubkina 8, Moscow 119991, Russia
Moscow Inst Phys & Technol, Ctr Pure Math, Dolgoprudnyi 141701, Russia
St Petersburg State Univ, St Petersburg 199034, Russia
Russian Acad Sci, Inst Math, Comp Ctr, Ufa Sci Ctr, Ufa 450008, RussiaRussian Acad Sci, Steklov Math Inst, ul Gubkina 8, Moscow 119991, Russia