The First-Order Necessary Conditions for Sparsity Constrained Optimization

被引:9
|
作者
Li X. [1 ]
Song W. [1 ]
机构
[1] School of Mathematical Sciences, Harbin Normal University, Harbin
基金
中国国家自然科学基金;
关键词
First-order necessary conditions; Mordukhovich normal cone; Sparsity constrained optimization;
D O I
10.1007/s40305-015-0107-x
中图分类号
学科分类号
摘要
In this paper, we study optimization problems with the sparsity constraints. Firstly we give the expressions of the Mordukhovich (the limiting) normal cone of sparsity constraint and its intersection with a polyhedral set, and then based on these expressions we present the first-order necessary conditions for sparsity constrained optimization. © 2015, Operations Research Society of China, Periodicals Agency of Shanghai University, Science Press, and Springer-Verlag Berlin Heidelberg.
引用
收藏
页码:521 / 535
页数:14
相关论文
共 50 条
  • [41] Efficient Event Series Data Modeling via First-Order Constrained Optimization
    Dalmasso, Niccolo
    Zhao, Renbo
    Ghassemi, Mohsen
    Potluru, Vamsi K.
    Balch, Tucker
    Veloso, Manuela
    PROCEEDINGS OF THE 4TH ACM INTERNATIONAL CONFERENCE ON AI IN FINANCE, ICAIF 2023, 2023, : 463 - 471
  • [42] A first-order interior-point method for linearly constrained smooth optimization
    Tseng, Paul
    Bomze, Immanuel M.
    Schachinger, Werner
    MATHEMATICAL PROGRAMMING, 2011, 127 (02) : 399 - 424
  • [43] First-Order Constrained Optimization: Non-smooth Dynamical System Viewpoint
    Schechtman, Sholom
    Tiapkin, Daniil
    Moulines, Eric
    Jordan, Michael, I
    Muehlebach, Michael
    IFAC PAPERSONLINE, 2022, 55 (16): : 236 - 241
  • [44] SLM: A Smoothed First-Order Lagrangian Method for Structured Constrained Nonconvex Optimization
    Lu, Songtao
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [45] Corrigendum: On the complexity of finding first-order critical points in constrained nonlinear optimization
    C. Cartis
    N. I. M. Gould
    Ph. L. Toint
    Mathematical Programming, 2017, 161 : 611 - 626
  • [46] A first-order interior-point method for linearly constrained smooth optimization
    Paul Tseng
    Immanuel M. Bomze
    Werner Schachinger
    Mathematical Programming, 2011, 127 : 399 - 424
  • [47] A new Lagrangian-based first-order method for nonconvex constrained optimization
    Kim, Jong Gwang
    OPERATIONS RESEARCH LETTERS, 2023, 51 (03) : 357 - 363
  • [48] Nonsmooth sparsity constrained optimization problems: optimality conditions
    N. Movahedian
    S. Nobakhtian
    M. Sarabadan
    Optimization Letters, 2019, 13 : 1027 - 1038
  • [49] Nonsmooth sparsity constrained optimization problems: optimality conditions
    Movahedian, N.
    Nobakhtian, S.
    Sarabadan, M.
    OPTIMIZATION LETTERS, 2019, 13 (05) : 1027 - 1038
  • [50] SPARSITY CONSTRAINED NONLINEAR OPTIMIZATION: OPTIMALITY CONDITIONS AND ALGORITHMS
    Beck, Amir
    Eldar, Yonina C.
    SIAM JOURNAL ON OPTIMIZATION, 2013, 23 (03) : 1480 - 1509