A group-theoretical finiteness theorem

被引:0
|
作者
Valentin Poénaru
Corrado Tanasi
机构
[1] Université de Paris Sud Mathématiques,
[2] Dipartimento di Matematica e Applicazioni,undefined
来源
Geometriae Dedicata | 2008年 / 137卷
关键词
PL-structure; Developing maps; Partial section; Cayley 2-complex; 57M07; 57M60; 57N65;
D O I
暂无
中图分类号
学科分类号
摘要
We start with the universal covering space \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\*M^n}$$\end{document} of a closed n-manifold and with a tree of fundamental domains which zips it \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${T\longrightarrow\*M^n}$$\end{document} . Our result is that, between T and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\* M^n}$$\end{document} , is an intermediary object, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${T\stackrel{p} {\longrightarrow} G \stackrel{F}{\longrightarrow} \*M^n}$$\end{document} , obtained by zipping, such that each fiber of p is finite and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${T\stackrel{p}{\longrightarrow}G\stackrel{F}{\longrightarrow} \*M^n}$$\end{document} admits a section.
引用
下载
收藏
页码:1 / 25
页数:24
相关论文
共 50 条