A group-theoretical finiteness theorem

被引:0
|
作者
Valentin Poénaru
Corrado Tanasi
机构
[1] Université de Paris Sud Mathématiques,
[2] Dipartimento di Matematica e Applicazioni,undefined
来源
Geometriae Dedicata | 2008年 / 137卷
关键词
PL-structure; Developing maps; Partial section; Cayley 2-complex; 57M07; 57M60; 57N65;
D O I
暂无
中图分类号
学科分类号
摘要
We start with the universal covering space \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\*M^n}$$\end{document} of a closed n-manifold and with a tree of fundamental domains which zips it \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${T\longrightarrow\*M^n}$$\end{document} . Our result is that, between T and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\* M^n}$$\end{document} , is an intermediary object, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${T\stackrel{p} {\longrightarrow} G \stackrel{F}{\longrightarrow} \*M^n}$$\end{document} , obtained by zipping, such that each fiber of p is finite and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${T\stackrel{p}{\longrightarrow}G\stackrel{F}{\longrightarrow} \*M^n}$$\end{document} admits a section.
引用
收藏
页码:1 / 25
页数:24
相关论文
共 50 条
  • [1] A group-theoretical finiteness theorem
    Poenaru, Valentin
    Tanasi, Corrado
    [J]. GEOMETRIAE DEDICATA, 2008, 137 (01) : 1 - 25
  • [2] A group-theoretical version of Hilbert's theorem 90
    Quadrelli, C.
    Weigel, Th.
    [J]. BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2015, 47 : 704 - 714
  • [3] GROUP-THEORETICAL BASIS OF ANGULAR MOMENTUM HELMHOLTZ THEOREM OF LOMONT AND MOSES
    LEUTWYLER, H
    [J]. NUOVO CIMENTO, 1965, 37 (02): : 543 - +
  • [4] A Jordan-Holder theorem for weakly group-theoretical fusion categories
    Natale, Sonia
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2016, 283 (1-2) : 367 - 379
  • [5] A Jordan–Hölder theorem for weakly group-theoretical fusion categories
    Sonia Natale
    [J]. Mathematische Zeitschrift, 2016, 283 : 367 - 379
  • [6] Group-theoretical graph categories
    Daniel Gromada
    [J]. Journal of Algebraic Combinatorics, 2022, 55 : 591 - 627
  • [7] GROUP-THEORETICAL INVESTIGATIONS ON COMPUTERS
    GERHARDS, L
    [J]. BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1977, MEM (49-5): : 65 - 91
  • [8] GROUP-THEORETICAL ASPECTS OF INSTANTONS
    MEYERS, C
    DEROO, M
    SORBA, P
    [J]. NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA A-NUCLEI PARTICLES AND FIELDS, 1979, 52 (04): : 519 - 530
  • [9] Group-theoretical approach to entanglement
    Korbicz, J. K.
    Lewenstein, M.
    [J]. PHYSICAL REVIEW A, 2006, 74 (02):
  • [10] Group-theoretical graph categories
    Gromada, Daniel
    [J]. JOURNAL OF ALGEBRAIC COMBINATORICS, 2022, 55 (02) : 591 - 627