Modelization of galactic cosmic-ray short-term variations for LISA

被引:0
|
作者
Mattia Villani
Federico Sabbatini
Catia Grimani
Michele Fabi
Andrea Cesarini
机构
[1] University of Urbino Carlo Bo,Department of Pure and Applied Sciences
[2] INFN,Section in Florence
来源
Experimental Astronomy | 2023年 / 56卷
关键词
Space laser interferometers; Solar-terrestrial relationships; Cosmic rays; Machine Learning models; Parker transport equation;
D O I
暂无
中图分类号
学科分类号
摘要
The European Space Agency Laser Interferometer Space Antenna (LISA) will be the first mission dedicated to the detection of low-frequency gravitational waves in space. Particles of galactic and solar origin above tens of MeV will penetrate the spacecraft and charge the metal free-falling test masses (TMs) playing the role of mirrors of the interferometer. The poissonian fluctuations of the charging process and associated spurious Coulomb forces acting on the TMs limit the sensitivity of LISA mainly below 1 mHz. Moreover, galactic cosmic-ray (GCR) flux short-term variations will modulate differently the TM charging on the three satellites of the LISA constellation. Without a proper GCR flux monitoring, the LISA TM charging estimates will be carried out on the basis of the long-term solar modulation only. In this work we report about models of galactic cosmic-ray short-term variations to investigate to which extent the galactic cosmic-ray depressions can be also used as a proxy of the increase of interplanetary magnetic field and solar wind speed observed at the passage of high-speed solar wind streams and interplanetary coronal mass ejections. Our final aim is to study the optimum characteristics of particle detectors for both TM charging estimate and interplanetary medium monitoring for LISA.
引用
收藏
页码:1 / 30
页数:29
相关论文
共 50 条
  • [31] The Origin of Short-Time Variations in Cosmic-Ray Intensity
    I. A. Lagoyda
    S. A. Voronov
    V. V. Mikhailov
    Physics of Atomic Nuclei, 2019, 82 : 1537 - 1546
  • [32] Models for galactic cosmic-ray propagation
    Strong, AW
    Moskalenko, IV
    ORIGIN AND ACCELERATION OF COSMIC RAYS, 2001, 27 (04): : 717 - 726
  • [33] A COSMIC-RAY SUPPORTED GALACTIC CORONA
    CHEVALIER, RA
    FRANSSON, C
    ASTROPHYSICAL JOURNAL, 1984, 279 (02): : L43 - L46
  • [34] GALACTIC INFALL AND COSMIC-RAY ACCELERATION
    HEDRICK, D
    COX, DP
    ASTROPHYSICAL JOURNAL, 1977, 215 (01): : 208 - 212
  • [35] A MODEL OF GALACTIC COSMIC-RAY FLUXES
    NYMMIK, RA
    PANASYUK, MI
    PERVAJA, TI
    SUSLOV, AA
    NUCLEAR TRACKS AND RADIATION MEASUREMENTS, 1992, 20 (03): : 427 - 429
  • [36] GEMS at the Galactic Cosmic-Ray Source
    A. J. Westphal
    A. M. Davis
    J. Levine
    M. J. Pellin
    M. R. Savina
    Space Science Reviews, 2007, 130 : 451 - 456
  • [37] GALACTIC EFFECTS OF COSMIC-RAY GAS
    PARKER, EN
    SPACE SCIENCE REVIEWS, 1969, 9 (05) : 651 - &
  • [38] COSMIC-RAY INTENSITY VARIATIONS
    POMERANTZ, MA
    DUGGAL, SP
    ANTARCTIC JOURNAL OF THE UNITED STATES, 1978, 13 (04): : 215 - 217
  • [39] GEMS at the galactic cosmic-ray source
    Westphal, A. J.
    Davis, A. M.
    Levine, J.
    Pellin, M. J.
    Savina, M. R.
    SPACE SCIENCE REVIEWS, 2007, 130 (1-4) : 451 - 456
  • [40] COSMIC-RAY INTENSITY VARIATIONS
    POMERANTZ, MA
    DUGGAL, SP
    ANTARCTIC JOURNAL OF THE UNITED STATES, 1975, 10 (05): : 224 - 225