Coulomb branches of star-shaped quivers

被引:0
|
作者
Tudor Dimofte
Niklas Garner
机构
[1] UC Davis,Department of Mathematics and Center for Quantum Mathematics and Physics (QMAP)
[2] UC Davis,Department of Physics and QMAP
关键词
Supersymmetric Gauge Theory; Topological Field Theories; Differential and Algebraic Geometry;
D O I
暂无
中图分类号
学科分类号
摘要
We study the Coulomb branches of 3d N=4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=4 $$\end{document} “star-shaped” quiver gauge theories and their deformation quantizations, by applying algebraic techniques that have been developed in the mathematics and physics literature over the last few years. The algebraic techniques supply an abelianization map, which embeds the Coulomb-branch chiral ring into a vastly simpler abelian algebra A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{A} $$\end{document}. Relations among chiral-ring operators, and their deformation quantization, are canonically induced from the embedding into A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{A} $$\end{document}. In the case of star-shaped quivers — whose Coulomb branches are related to Higgs branches of 4d N=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=2 $$\end{document} theories of Class S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{S} $$\end{document} — this allows us to systematically verify known relations, to generalize them, and to quantize them. In the quantized setting, we find several new families of relations.
引用
收藏
相关论文
共 50 条
  • [21] A CHARACTERIZATION OF STAR-SHAPED SETS
    SMITH, CR
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1968, 75 (04): : 386 - &
  • [22] On the estimation of a star-shaped set
    Baíllo, A
    Cuevas, A
    [J]. ADVANCES IN APPLIED PROBABILITY, 2001, 33 (04) : 717 - 726
  • [23] Star-shaped acceptability indexes
    Righi, Marcelo Brutti
    [J]. INSURANCE MATHEMATICS & ECONOMICS, 2024, 117 : 170 - 181
  • [24] Star-shaped stilbenoid phthalocyanines
    Kimura, M
    Narikawa, H
    Ohta, K
    Hanabusa, K
    Shirai, H
    Kobayashi, N
    [J]. CHEMISTRY OF MATERIALS, 2002, 14 (06) : 2711 - 2717
  • [25] Star-shaped distributions and their generalizations
    Kamiya, Hidehiko
    Takemura, Akimichi
    Kuriki, Satoshi
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2008, 138 (11) : 3429 - 3447
  • [26] Star-shaped fluorescent polypeptides
    Klok, HA
    Hernández, JR
    Becker, S
    Müllen, K
    [J]. JOURNAL OF POLYMER SCIENCE PART A-POLYMER CHEMISTRY, 2001, 39 (10) : 1572 - 1583
  • [27] Homothetic preferences on star-shaped sets
    Maccheroni F.
    [J]. Decisions in Economics and Finance, 2001, 24 (1) : 41 - 47
  • [28] EXTREMAL STRUCTURE OF STAR-SHAPED SETS
    TIDMORE, FE
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 1969, 29 (02) : 461 - &
  • [29] STAR-SHAPED SETS AND BEST APPROXIMATION
    DEBLASI, FS
    MYJAK, J
    PAPINI, PL
    [J]. ARCHIV DER MATHEMATIK, 1991, 56 (01) : 41 - 48
  • [30] Star-shaped sets in normed spaces
    Boltyanski, V
    Martini, H
    Soltan, PS
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 1996, 15 (01) : 63 - 71