On a critical Schrödinger system involving Hardy terms

被引:0
|
作者
Zhenyu Guo
Senping Luo
Wenming Zou
机构
[1] Liaoning Normal University,School of Mathematics
[2] Jiangxi Normal University,School of Mathematics and statistics
[3] Tsinghua University,Department of Mathematical Sciences
关键词
35B38; 35J10; 35J15; 35J20; 35J60; 49J40;
D O I
暂无
中图分类号
学科分类号
摘要
This paper concerns an elliptic system with critical exponents: -Δuj-λj|x|2uj=uj2∗-1+∑k≠jβjkαjkujαjk-1ukαkj,x∈RN,uj∈D1,2(RN),uj>0inRN\{0},j=1,…,r,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} {\left\{ \begin{array}{ll} -\Delta u_j-\frac{\lambda _j}{|x|^2}u_j=u_j^{2^*-1}+\sum \limits _{k\ne j}\beta _{jk}\alpha _{jk}u_j^{\alpha _{jk}-1}u_k^{\alpha _{kj}},\;\;x\in {{\mathbb {R}}}^N,\\ u_j\in D^{1,2}({{\mathbb {R}}}^N),\quad u_j>0 \;\; \hbox {in} \quad {{\mathbb {R}}}^N\setminus \{0\},\quad j=1, \ldots ,r,\end{array}\right. } \end{aligned}$$\end{document}where N≥3,r≥2,2∗=2NN-2,λj∈(0,(N-2)24)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\ge 3, r\ge 2, 2^*=\frac{2N}{N-2}, \lambda _j\in (0, \frac{(N-2)^2}{4})$$\end{document} for all j=1,…,r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ j=1, \ldots ,r $$\end{document}; βjk=βkj\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta _{jk}=\beta _{kj}$$\end{document}; αjk>1,αkj>1,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha _{jk}>1, \alpha _{kj}>1,$$\end{document} and αjk+αkj=2∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha _{jk}+\alpha _{kj}=2^* $$\end{document} for all k≠j\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\ne j$$\end{document}. Note that the nonlinearities uj2∗-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_j^{2^*-1}$$\end{document} and the coupling terms are all critical in arbitrary dimension N≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\ge 3 $$\end{document}. The signs of the coupling constants βij\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta _{ij}$$\end{document} are decisive for the existence of the ground-state solutions. We show that the critical system with r≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r\ge 3$$\end{document} has a positive ground-state solution for all βjk>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta _{jk}>0$$\end{document} with some constraint on λj\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _j$$\end{document}. However, there is no ground-state solution when all βjk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta _{jk}$$\end{document} are negative. It is also proved that the positive solution of the system is radially symmetric. Furthermore, we obtain an uniqueness theorem for the case r≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r\ge 3$$\end{document} with N=4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N=4$$\end{document} and an existence theorem for the case r=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r=2$$\end{document} with general coupling exponents.
引用
收藏
相关论文
共 50 条
  • [1] On a critical Schrodinger system involving Hardy terms
    Guo, Zhenyu
    Luo, Senping
    Zou, Wenming
    JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2021, 23 (04)
  • [2] On the noncooperative Schrödinger–Kirchhoff system involving the critical nonlinearities on the Heisenberg group
    Xueqi Sun
    Shujie Bai
    Yueqiang Song
    Boundary Value Problems, 2022
  • [3] Solutions for Schr?dinger-Poisson system involving nonlocal term and critical exponent
    MO Xiu-ming
    MAO An-min
    WANG Xiang-xiang
    AppliedMathematics:AJournalofChineseUniversities, 2023, 38 (03) : 357 - 372
  • [4] Solutions for Schrödinger-Poisson system involving nonlocal term and critical exponent
    Xiu-ming Mo
    An-min Mao
    Xiang-xiang Wang
    Applied Mathematics-A Journal of Chinese Universities, 2023, 38 : 357 - 372
  • [5] A coupled Schrödinger system with critical exponent
    Haidong Liu
    Zhaoli Liu
    Calculus of Variations and Partial Differential Equations, 2020, 59
  • [6] A system of schrödinger equations in the critical case
    Puriuškis G.
    Lithuanian Mathematical Journal, 2001, 41 (1) : 65 - 71
  • [7] The Schrödinger-Poisson type system involving a critical nonlinearity on the first Heisenberg group
    Yu-Cheng An
    Hairong Liu
    Israel Journal of Mathematics, 2020, 235 : 385 - 411
  • [8] On a planar non-autonomous Schrödinger–Poisson system involving exponential critical growth
    F. S. Albuquerque
    J. L. Carvalho
    G. M. Figueiredo
    E. Medeiros
    Calculus of Variations and Partial Differential Equations, 2021, 60
  • [9] Existence theorems for the Schrödinger equation involving a critical Sobolev exponent
    J. Chabrowski
    J. Yang
    Zeitschrift für angewandte Mathematik und Physik ZAMP, 1998, 49 : 276 - 293
  • [10] On a Schrödinger–Poisson system with singularity and critical nonlinearities
    Zhipeng Cai
    Chunyu Lei
    Changmu Chu
    Boundary Value Problems, 2020