Surfaces with pg = q = 1, K2 = 8 and nonbirational bicanonical map

被引:0
|
作者
Giuseppe Borrelli
机构
[1] Universidade federal de Pernambuco,Departamento de Matemática
来源
manuscripta mathematica | 2009年 / 130卷
关键词
14J29; 14E05;
D O I
暂无
中图分类号
学科分类号
摘要
We prove that if the bicanonical map of a minimal surface of general type S with pg = q = 1 and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${K_{S}^2=8}$$\end{document} is nonbirational, then it is a double cover onto a rational surface. An application of this theorem is the complete classification of minimal surfaces of general type with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${p_{g}=q=1, K_{S}^2=8}$$\end{document} and nonbirational bicanonical map.
引用
收藏
页码:523 / 531
页数:8
相关论文
共 50 条