On Numerical Approaches for Solving an Inverse Cauchy Stokes Problem

被引:0
|
作者
Hamid Ouaissa
Abdelkrim Chakib
Abdeljalil Nachaoui
Mourad Nachaoui
机构
[1] Université Sultan Moulay Slimane,Laboratoire de Mathématiques et Applications, Faculté des Sciences et Techniques
[2] Laboratoire de Mathématiques Jean Leray UMR6629 CNRS / Université de Nantes 2 rue de la Houssinière,undefined
来源
关键词
Inverse problems; Stokes equation; Tikhonov regularization; Numerical approximation; Finite element method; 65N21; 65M60; 65M30; 65M32;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we are interested in the study of an inverse Cauchy problem governed by Stokes equation. It consists in determining the fluid velocity and the flux over a part of the boundary, by introducing given measurements on the remaining part. As it’s known, it is one of highly ill-posed problems in the Hadamard’s sense (Phys Today 6:18, 1953), it is then an interesting challenge to carry out a numerical procedure for approximating their solutions, in particular, in the presence of noisy data. To solve this problem, we propose here a regularizing approach based on a Tikhonov regularization method. We show the existence of the regularization optimization problem and prove the convergence of subsequence of optimal solutions of Tikhonov regularization formulations to the solution of the Cauchy problem, when the noise level goes to zero. Then, we suggest the numerical approximation of this problem using the finite elements method of P1Bubble/P1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_{1Bubble}/P_1$$\end{document} type’s, we show the existence of the discrete optimal regularized solution without noise and prove the convergence of subsequence of discrete optimal solutions to the solution of the continuous optimization problem. Finally, we provide some numerical results showing the accuracy and the efficiency of the proposed approach.
引用
收藏
相关论文
共 50 条
  • [41] A Numerical Algorithm Based on RBFs for Solving an Inverse Source Problem
    Shidfar, A.
    Darooghehgimofrad, Z.
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2017, 40 (03) : 1149 - 1158
  • [42] Numerical method for solving the inverse problem of quantum scattering theory
    Airapetyan, RG
    Puzynin, IV
    Zhidkov, EP
    INVERSE AND ALGEBRAIC QUANTUM SCATTERING THEORY, 1997, 488 : 88 - 97
  • [43] Multivariate numerical derivative by solving an inverse heat source problem
    Qiu, Shufang
    Wang, Zewen
    Xie, Anlai
    INVERSE PROBLEMS IN SCIENCE AND ENGINEERING, 2018, 26 (08) : 1178 - 1197
  • [44] Numerical method for solving inverse source problem for Poisson equation
    Benyoucef, Abir
    Alem, Leila
    Chorfi, Lahcene
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2021, 14 (10)
  • [45] Numerical aspects of solving the combined inverse problem of acoustics and geoeletrics
    Avdeev, A.V.
    Skazka, V.V.
    Zeitschrift fuer Angewandte Mathematik und Mechanik, ZAMM, Applied Mathematics and Mechanics, 1996, 76 (suppl 5):
  • [46] Numerical Simulation for Solving an Inverse Boundary Heat Conduction Problem
    Yaparova, N. M.
    BULLETIN OF THE SOUTH URAL STATE UNIVERSITY SERIES-MATHEMATICAL MODELLING PROGRAMMING & COMPUTER SOFTWARE, 2013, 6 (03): : 112 - 124
  • [47] On numerical methods of solving inverse problem of quantum scattering theory
    Zhidkov, EP
    Airapetyan, RG
    VESTNIK MOSKOVSKOGO UNIVERSITETA SERIYA 1 MATEMATIKA MEKHANIKA, 1996, (06): : 38 - 40
  • [48] NUMERICAL-METHOD OF SOLVING THE INVERSE PROBLEM OF THE THEORY OF POTENTIAL
    BANCHEV, VT
    GEORGIEV, G
    NEDYALKOV, IP
    DOKLADI NA BOLGARSKATA AKADEMIYA NA NAUKITE, 1978, 31 (08): : 983 - 985
  • [49] Cauchy problem for an inverse problem in image inpainting
    Moakher, Maher
    Kallel, Moez
    Theljani, Anis
    PROCEEDINGS OF 2013 INTERNATIONAL CONFERENCE ON INDUSTRIAL ENGINEERING AND SYSTEMS MANAGEMENT (IEEE-IESM 2013), 2013, : 431 - 431
  • [50] On the well posedness and Steffensen's based numerical approximation of an inverse Cauchy problem
    Ouaissa, H.
    Chakib, A.
    Sadik, A.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2024, 451