Generalized Lie bialgebras and Jacobi structures on Lie groups

被引:0
|
作者
David Iglesias
Juan C. Marrero
机构
[1] Universidad de la Laguna,Departamento de Matemática Fundamental, Facultad de Matemáticas
[2] La Laguna,undefined
来源
关键词
Invariant Vector Field; Schouten Bracket; Jacobi Structure; Jacobi Bracket; Intrinsic Derivative;
D O I
暂无
中图分类号
学科分类号
摘要
We study generalized Lie bialgebroids over a single point, that is, generalized Lie bialgebras and we prove that they can be considered as the infinitesimal invariants of Lie groups endowed with a certain type of Jacobi structure. We also propose a method generalizing the Yang-Baxter equation method to obtain generalized Lie bialgebras. Finally, we classify the compact generalized Lie bialgebras.
引用
收藏
页码:285 / 320
页数:35
相关论文
共 50 条
  • [31] Classification of real three-dimensional Lie bialgebras and their Poisson-Lie groups
    Rezaei-Aghdam, A
    Hemmati, M
    Rastkar, AR
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (18): : 3981 - 3994
  • [32] Lie Bialgebras of Generalized Virasoro-like Type
    Yue Zhu WU Department of Mathematics
    Acta Mathematica Sinica,English Series, 2006, 22 (06) : 1915 - 1922
  • [33] Lie bialgebras of not-finitely graded Lie algebras related to generalized Virasoro algebras
    Chen, Qiufan
    Han, Jianzhi
    Su, Yucai
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2014, 25 (05)
  • [34] Lie bialgebras of generalized Virasoro-like type
    Wu, Yue Zhu
    Song, Guang Ai
    Su, Yu Cai
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2006, 22 (06) : 1915 - 1922
  • [35] JACOBI AND THE BIRTH OF LIE THEORY OF GROUPS
    HAWKINS, T
    ARCHIVE FOR HISTORY OF EXACT SCIENCES, 1991, 42 (03) : 187 - 278
  • [36] Biquantization of Lie bialgebras
    Kassel, C
    Turaev, V
    PACIFIC JOURNAL OF MATHEMATICS, 2000, 195 (02) : 297 - 369
  • [37] On quantum groups and Lie bialgebras related to sl(n)
    Stolin, A.
    Pop, I.
    3QUANTUM: ALGEBRA GEOMETRY INFORMATION (QQQ CONFERENCE 2012), 2014, 532
  • [38] Jacobi-Lie Hamiltonian Systems on Real Low-Dimensional Jacobi-Lie Groups and their Lie Symmetries
    Amirzadeh-Fard, H.
    Haghighatdoost, Gh
    Rezaei-Aghdam, A.
    JOURNAL OF MATHEMATICAL PHYSICS ANALYSIS GEOMETRY, 2022, 18 (01) : 33 - 56
  • [39] Jordan bialgebras and their relation to Lie bialgebras
    V. N. Zhelyabin
    Algebra and Logic, 1997, 36 (1) : 1 - 15
  • [40] Quantization of Γ-Lie bialgebras
    Enriquez, Benjamin
    Halbout, Gilles
    JOURNAL OF ALGEBRA, 2008, 319 (09) : 3752 - 3769