Predicting cash holdings using supervised machine learning algorithms

被引:0
|
作者
Şirin Özlem
Omer Faruk Tan
机构
[1] MEF University,Department of Industrial Engineering, Faculty of Engineering
[2] Marmara University,Department of Accounting and Finance, Faculty of Business Administration
来源
Financial Innovation | / 8卷
关键词
XGBoost; MLNN; Cash holdings; Turkey; Machine learning; C38; C53; G30;
D O I
暂无
中图分类号
学科分类号
摘要
This study predicts the cash holdings policy of Turkish firms, given the 20 selected features with machine learning algorithm methods. 211 listed firms in the Borsa Istanbul are analyzed over the period between 2006 and 2019. Multiple linear regression (MLR), k-nearest neighbors (KNN), support vector regression (SVR), decision trees (DT), extreme gradient boosting algorithm (XGBoost) and multi-layer neural networks (MLNN) are used for prediction. Results reveal that MLR, KNN, and SVR provide high root mean square error (RMSE) and low R2 values. Meanwhile, more complex algorithms, such as DT and especially XGBoost, derive higher accuracy with a 0.73 R2 value. Therefore, using advanced machine learning algorithms, we may predict cash holdings considerably.
引用
收藏
相关论文
共 50 条
  • [41] Predicting measures of soil health using the microbiome and supervised machine learning
    Wilhelm, Roland C.
    van Es, Harold M.
    Buckley, Daniel H.
    SOIL BIOLOGY & BIOCHEMISTRY, 2022, 164
  • [42] Predicting Corona Virus Affected Patients Using Supervised Machine Learning
    David, H. Benjamin Fredrick
    Suruliandi, A.
    Raja, S. P.
    INTERNATIONAL JOURNAL OF UNCERTAINTY FUZZINESS AND KNOWLEDGE-BASED SYSTEMS, 2022, 30 (SUPP01) : 141 - 167
  • [43] Comprehensive Review On Supervised Machine Learning Algorithms
    Gianey, Hemant Kumar
    Choudhary, Rishabh
    2017 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND DATA SCIENCE (MLDS 2017), 2017, : 37 - 43
  • [44] Predicting Chronic Kidney Disease Using Machine Learning Algorithms
    Farjana, Afia
    Liza, Fatema Tabassum
    Pandit, Parth Pratim
    Das, Madhab Chandra
    Hasan, Mahadi
    Tabassum, Fariha
    Hossen, Md. Helal
    2023 IEEE 13TH ANNUAL COMPUTING AND COMMUNICATION WORKSHOP AND CONFERENCE, CCWC, 2023, : 1267 - 1271
  • [45] Predicting and Analyzing Absenteeism at Workplace Using Machine Learning Algorithms
    Rista, Amarildo
    Ajdari, Jaumin
    Zenuni, Xhemal
    2020 43RD INTERNATIONAL CONVENTION ON INFORMATION, COMMUNICATION AND ELECTRONIC TECHNOLOGY (MIPRO 2020), 2020, : 485 - 490
  • [46] Predicting the recurrence of breast cancer using machine learning algorithms
    Amal Alzu’bi
    Hassan Najadat
    Wesam Doulat
    Osama Al-Shari
    Leming Zhou
    Multimedia Tools and Applications, 2021, 80 : 13787 - 13800
  • [47] Predicting Recreational Activity Participation Using Machine Learning Algorithms
    Lee, SeungBak
    Kang, Minsoo
    RESEARCH QUARTERLY FOR EXERCISE AND SPORT, 2023, 94 : A16 - A17
  • [48] Investigations on cardiovascular diseases and predicting using machine learning algorithms
    Ram Kumar, R. P.
    Polepaka, Sanjeeva
    Manasa, Vanam
    Palakurthy, Deepthi
    Annapoorna, Errabelli
    Dhaliwal, Navdeep
    Dhall, Himanshu
    Alzubaidi, Laith H.
    COGENT ENGINEERING, 2024, 11 (01):
  • [49] Predicting the recurrence of breast cancer using machine learning algorithms
    Alzu'bi, Amal
    Najadat, Hassan
    Doulat, Wesam
    Al-Shari, Osama
    Zhou, Leming
    MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (09) : 13787 - 13800
  • [50] A Model for Predicting Cervical Cancer Using Machine Learning Algorithms
    Al Mudawi, Naif
    Alazeb, Abdulwahab
    SENSORS, 2022, 22 (11)