Bayesian analysis of mixture modelling using the multivariate t distribution

被引:0
|
作者
Tsung I. Lin
Jack C. Lee
Huey F. Ni
机构
[1] Tunghai University,Department of Statistics
[2] National Chiao Tung University,Institute of Statistics and Graduate Institute of Finance
[3] National Chiao Tung University,Institute of Statistics
来源
Statistics and Computing | 2004年 / 14卷
关键词
ECM; ECME; maximum a posteriori; maximum likelihood estimation; MCMC; mixture model;
D O I
暂无
中图分类号
学科分类号
摘要
A finite mixture model using the multivariate t distribution has been shown as a robust extension of normal mixtures. In this paper, we present a Bayesian approach for inference about parameters of t-mixture models. The specifications of prior distributions are weakly informative to avoid causing nonintegrable posterior distributions. We present two efficient EM-type algorithms for computing the joint posterior mode with the observed data and an incomplete future vector as the sample. Markov chain Monte Carlo sampling schemes are also developed to obtain the target posterior distribution of parameters. The advantages of Bayesian approach over the maximum likelihood method are demonstrated via a set of real data.
引用
收藏
页码:119 / 130
页数:11
相关论文
共 50 条
  • [31] Multivariate Bayesian meta-analysis: joint modelling of multiple cancer types using summary statistics
    Jahan, Farzana
    Duncan, Earl W.
    Cramb, Susana M.
    Baade, Peter D.
    Mengersen, Kerrie L.
    [J]. INTERNATIONAL JOURNAL OF HEALTH GEOGRAPHICS, 2020, 19 (01)
  • [32] ON THE USES OF THE t-DISTRIBUTION IN MULTIVARIATE ANALYSIS
    Bhattacharyya, A.
    [J]. SANKHYA, 1952, 12 : 89 - 104
  • [33] Multivariate Bayesian meta-analysis: joint modelling of multiple cancer types using summary statistics
    Farzana Jahan
    Earl W. Duncan
    Susana M. Cramb
    Peter D. Baade
    Kerrie L. Mengersen
    [J]. International Journal of Health Geographics, 19
  • [34] Robust mixture modeling using multivariate skew t distributions
    Tsung-I Lin
    [J]. Statistics and Computing, 2010, 20 : 343 - 356
  • [35] Robust mixture modeling using multivariate skew t distributions
    Lin, Tsung-I
    [J]. STATISTICS AND COMPUTING, 2010, 20 (03) : 343 - 356
  • [36] Objective Bayesian analysis for the multivariate skew-t model
    Parisi, Antonio
    Liseo, B.
    [J]. STATISTICAL METHODS AND APPLICATIONS, 2018, 27 (02): : 277 - 295
  • [37] Objective Bayesian analysis for the multivariate skew-t model
    Antonio Parisi
    B. Liseo
    [J]. Statistical Methods & Applications, 2018, 27 : 277 - 295
  • [38] Addressing non-normality in multivariate analysis using the t-distribution
    Felipe Osorio
    Manuel Galea
    Claudio Henríquez
    Reinaldo Arellano-Valle
    [J]. AStA Advances in Statistical Analysis, 2023, 107 : 785 - 813
  • [39] Addressing non-normality in multivariate analysis using the t-distribution
    Osorio, Felipe
    Galea, Manuel
    Henriquez, Claudio
    Arellano-Valle, Reinaldo
    [J]. ASTA-ADVANCES IN STATISTICAL ANALYSIS, 2023, 107 (04) : 785 - 813
  • [40] Bayesian analysis of multivariate t linear mixed models using a combination of IBF and Gibbs samplers
    Wang, Wan-Lun
    Fan, Tsai-Hung
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2012, 105 (01) : 300 - 310