Existence and stability of traveling waves for doubly degenerate diffusion equations

被引:0
|
作者
Rui Huang
Zhanghua Liang
Zhuangzhuang Wang
机构
[1] South China Normal University,School of Mathematical Sciences
关键词
Doubly degenerate; Traveling waves; Existence; Stability; 35B35; 35C07; 35K57; 35K59;
D O I
暂无
中图分类号
学科分类号
摘要
This paper is concerned with the existence and stability of traveling waves for doubly degenerate diffusion equations, where the spatial diffusion operator is of the form ∂x(|∂xum|p-2∂xum)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\partial _x(|\partial _x u^m|^{p-2}\partial _x u^m)$$\end{document} with m>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m>0$$\end{document} and p>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p>1$$\end{document}. It is proved that, for the slow diffusion case m(p-1)>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m(p-1)>1$$\end{document}, there exists a minimum wave speed c∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c^*$$\end{document}, such that the problem admits smooth traveling waves when wave speed c>c∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c>c^*$$\end{document} and semi-finite traveling waves with critical wave speed c=c∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c=c^*$$\end{document} while, for the fast diffusion case 0<m(p-1)<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<m(p-1)<1$$\end{document}, there is no nonnegative traveling wave solution. By the weighted energy method, we also show the L1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^1$$\end{document}-stability of the traveling waves.
引用
收藏
相关论文
共 50 条
  • [1] Existence and stability of traveling waves for doubly degenerate diffusion equations
    Huang, Rui
    Liang, Zhanghua
    Wang, Zhuangzhuang
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2023, 74 (02):
  • [2] Stability of Traveling Waves for Degenerate Systems of Reaction Diffusion Equations
    Ghazaryan, Anna
    Latushkin, Yuri
    Schecter, Stephen
    [J]. INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2011, 60 (02) : 443 - 471
  • [3] Smooth traveling waves for doubly nonlinear degenerate diffusion equations with time delay
    Huang, Rui
    Wang, Zhuangzhuang
    Xu, Tianyuan
    [J]. APPLICABLE ANALYSIS, 2023, 102 (17) : 4733 - 4756
  • [4] Existence and Stability of Traveling Waves for Degenerate Reaction–Diffusion Equation with Time Delay
    Rui Huang
    Chunhua Jin
    Ming Mei
    Jingxue Yin
    [J]. Journal of Nonlinear Science, 2018, 28 : 1011 - 1042
  • [5] Existence of weak solutions to doubly degenerate diffusion equations
    Aleš Matas
    Jochen Merker
    [J]. Applications of Mathematics, 2012, 57 : 43 - 69
  • [6] EXISTENCE OF WEAK SOLUTIONS TO DOUBLY DEGENERATE DIFFUSION EQUATIONS
    Matas, Ales
    Merker, Jochen
    [J]. APPLICATIONS OF MATHEMATICS, 2012, 57 (01) : 43 - 69
  • [7] Existence and Stability of Traveling Waves for Degenerate Reaction-Diffusion Equation with Time Delay
    Huang, Rui
    Jin, Chunhua
    Mei, Ming
    Yin, Jingxue
    [J]. JOURNAL OF NONLINEAR SCIENCE, 2018, 28 (03) : 1011 - 1042
  • [8] Existence and stability of traveling waves in parabolic systems of differential equations with weak diffusion
    Klevchuk, I. I.
    [J]. CARPATHIAN MATHEMATICAL PUBLICATIONS, 2022, 14 (02) : 493 - 503
  • [9] SYSTEMS OF COUPLED DIFFUSION EQUATIONS WITH DEGENERATE NONLINEAR SOURCE TERMS: LINEAR STABILITY AND TRAVELING WAVES
    Wylie, Jonathan J.
    Huang, Huaxiong
    Miura, Robert M.
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2009, 23 (1-2): : 561 - 569
  • [10] Traveling waves for time-delayed reaction diffusion equations with degenerate diffusion
    Xu, Tianyuan
    Ji, Shanming
    Mei, Ming
    Yin, Jingxue
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 265 (09) : 4442 - 4485