EXISTENCE OF WEAK SOLUTIONS TO DOUBLY DEGENERATE DIFFUSION EQUATIONS

被引:6
|
作者
Matas, Ales [1 ]
Merker, Jochen [2 ]
机构
[1] Univ W Bohemia, Dept Math, Plzen 30614, Czech Republic
[2] Univ Rostock, Inst Math, D-18051 Rostock, Germany
关键词
p-Laplacian; doubly nonlinear evolution equation; weak solution; UNIQUENESS; BOUNDS;
D O I
10.1007/s10492-012-0004-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove existence of weak solutions to doubly degenerate diffusion equations (u) over dot = Delta(p)u(m-1) + f (m,p >= 2) by Faedo-Galerkin approximation for general domains and general nonlinearities. More precisely, we discuss the equation in an abstract setting, which allows to choose function spaces corresponding to bounded or unbounded domains Omega subset of R-n with Dirichlet or Neumann boundary conditions. The function f can be an inhomogeneity or a nonlinearity involving terms of the form f (u) or div(F (u)). In the appendix, an introduction to weak differentiability of functions with values in a Banach space appropriate for doubly nonlinear evolution equations is given.
引用
收藏
页码:43 / 69
页数:27
相关论文
共 50 条