Forbidding Complete Hypergraphs as Traces

被引:0
|
作者
Dhruv Mubayi
Yi Zhao
机构
[1] University of Illinois,Department of Mathematics, Statistics, and Computer Science
[2] Georgia State University,Department of Mathematics and Statistics
来源
Graphs and Combinatorics | 2007年 / 23卷
关键词
Trace; hypergraph; turán problem; extremal problem;
D O I
暂无
中图分类号
学科分类号
摘要
Let 2 ≤q ≤min{p, t − 1} be fixed and n → ∞. Suppose that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{F}$$\end{document} is a p-uniform hypergraph on n vertices that contains no complete q-uniform hypergraph on t vertices as a trace. We determine the asymptotic maximum size of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{F}}$$\end{document} in many cases. For example, when q = 2 and p∈{t, t + 1}, the maximum is \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$( \frac{n}{t-1})^{t-1} + o(n^{t-1})$$\end{document} , and when p = t = 3, it is \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lfloor \frac{(n-1)^2}{4}\rfloor$$\end{document} for all n≥ 3. Our proofs use the Kruskal-Katona theorem, an extension of the sunflower lemma due to Füredi, and recent results on hypergraph Turán numbers.
引用
收藏
页码:667 / 679
页数:12
相关论文
共 50 条
  • [21] COVERING PROBLEM OF COMPLETE UNIFORM HYPERGRAPHS
    SNIR, M
    DISCRETE MATHEMATICS, 1979, 27 (01) : 103 - 105
  • [22] Monochromatic Edges in Complete Multipartite Hypergraphs
    Kittipassorn, Teeradej
    Sirirojrattana, Boonpipop
    MATHEMATICS, 2022, 10 (13)
  • [23] THE EDGE IDEALS OF COMPLETE MULTIPARTITE HYPERGRAPHS
    Kiani, Dariush
    Madani, Sara Saeedi
    COMMUNICATIONS IN ALGEBRA, 2015, 43 (07) : 3020 - 3032
  • [24] On the rectilinear crossing number of complete uniform hypergraphs
    Anshu, Anurag
    Gangopadhyay, Rahul
    Shannigrahi, Saswata
    Vusirikala, Satyanarayana
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2017, 61 : 38 - 47
  • [25] IMPROVED BOUNDS FOR COVERING COMPLETE UNIFORM HYPERGRAPHS
    RADHAKRISHNAN, J
    INFORMATION PROCESSING LETTERS, 1992, 41 (04) : 203 - 207
  • [26] Decompositions of complete 3-uniform hypergraphs into small 3-uniform hypergraphs
    Bryant, Darryn
    Herke, Sarada
    Maenhaut, Barbara
    Wannasit, Wannasiri
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2014, 60 : 227 - 254
  • [27] Covering complete partite hypergraphs by monochromatic components
    Gyarfas, Andras
    Kiraly, Zoltan
    DISCRETE MATHEMATICS, 2017, 340 (12) : 2753 - 2761
  • [28] Large monochromatic components in colorings of complete hypergraphs
    Lichev, Lyuben
    Luo, Sammy
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2024, 205
  • [29] Some extremal results on complete degenerate hypergraphs
    Ma, Jie
    Yuan, Xiaofan
    Zhang, Mingwei
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2018, 154 : 598 - 609
  • [30] The genus of complete 3-uniform hypergraphs
    Jing, Yifan
    Mohar, Bojan
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2020, 141 : 223 - 239