Let 2 ≤q ≤min{p, t − 1} be fixed and n → ∞. Suppose that \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathcal{F}$$\end{document} is a p-uniform hypergraph on n vertices that contains no complete q-uniform hypergraph on t vertices as a trace. We determine the asymptotic maximum size of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathcal{F}}$$\end{document} in many cases. For example, when q = 2 and p∈{t, t + 1}, the maximum is \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$( \frac{n}{t-1})^{t-1} + o(n^{t-1})$$\end{document} , and when p = t = 3, it is \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\lfloor \frac{(n-1)^2}{4}\rfloor$$\end{document} for all n≥ 3. Our proofs use the Kruskal-Katona theorem, an extension of the sunflower lemma due to Füredi, and recent results on hypergraph Turán numbers.