Forbidding Complete Hypergraphs as Traces

被引:0
|
作者
Dhruv Mubayi
Yi Zhao
机构
[1] University of Illinois,Department of Mathematics, Statistics, and Computer Science
[2] Georgia State University,Department of Mathematics and Statistics
来源
Graphs and Combinatorics | 2007年 / 23卷
关键词
Trace; hypergraph; turán problem; extremal problem;
D O I
暂无
中图分类号
学科分类号
摘要
Let 2 ≤q ≤min{p, t − 1} be fixed and n → ∞. Suppose that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{F}$$\end{document} is a p-uniform hypergraph on n vertices that contains no complete q-uniform hypergraph on t vertices as a trace. We determine the asymptotic maximum size of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{F}}$$\end{document} in many cases. For example, when q = 2 and p∈{t, t + 1}, the maximum is \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$( \frac{n}{t-1})^{t-1} + o(n^{t-1})$$\end{document} , and when p = t = 3, it is \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lfloor \frac{(n-1)^2}{4}\rfloor$$\end{document} for all n≥ 3. Our proofs use the Kruskal-Katona theorem, an extension of the sunflower lemma due to Füredi, and recent results on hypergraph Turán numbers.
引用
收藏
页码:667 / 679
页数:12
相关论文
共 50 条
  • [1] Forbidding complete hypergraphs as traces
    Mubayi, Dhruv
    Zhao, Yi
    GRAPHS AND COMBINATORICS, 2007, 23 (06) : 667 - 679
  • [2] Forbidding Hamilton cycles in uniform hypergraphs
    Han, Jie
    Zhao, Yi
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2016, 143 : 107 - 115
  • [3] Traces of hypergraphs
    Alon, Noga
    Moshkovitz, Guy
    Solomon, Noam
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2019, 100 (02): : 498 - 517
  • [4] Cyclic partitions of complete nonuniform hypergraphs and complete multipartite hypergraphs
    1600, Discrete Mathematics and Theoretical Computer Science (15):
  • [5] Cyclic partitions of complete nonuniform hypergraphs and complete multipartite hypergraphs
    Gosselin, Shonda
    Szymanski, A.
    Wojda, A. Pawel
    DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2013, 15 (02): : 215 - 222
  • [6] Forbidding K2,t traces in triple systems
    Luo, Ruth
    Spiro, Sam
    ELECTRONIC JOURNAL OF COMBINATORICS, 2021, 28 (02):
  • [7] Complete colourings of hypergraphs
    Edwards, Keith
    Rzazewski, Pawel
    DISCRETE MATHEMATICS, 2020, 343 (02)
  • [8] On decompositions of complete hypergraphs
    Cioaba, Sebastian M.
    Kuendgen, Andre
    Verstraete, Jacques
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2009, 116 (07) : 1232 - 1234
  • [9] Preface to Induced Turan problems and traces of hypergraphs
    Furedi, Zoltan
    Luo, Ruth
    EUROPEAN JOURNAL OF COMBINATORICS, 2023, 111
  • [10] Factorizations of complete multipartite hypergraphs
    Bahmanian, M. A.
    DISCRETE MATHEMATICS, 2017, 340 (02) : 46 - 50