Rotationally symmetric symphonic maps

被引:0
|
作者
Nobumitsu Nakauchi
机构
[1] Yamaguchi University,Graduate School of Sciences and Technology for Innovation
来源
关键词
Variational problem; Pullbacks of metrics; Symphonic map; Rotationally symmetric; Primary; secondary : 58E99; 58E20; 53C43;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a functional of pullbacks of metrics on the space of maps f between Riemannian manifolds. Harmonic maps are stationary points of the energy functional E(f) which is an integral of the trace of the pullback of the metric of the target manifold by f. Our functional Esym(f)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E_\mathrm{sym} (f)$$\end{document} is an integral of the norm of the pullback. Stationary maps for Esym(f)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E_\mathrm{sym}(f)$$\end{document} are called as symphonic maps (Kawai in Nonlinear Anal. 74: 2284-2295, 2011), (Kawai in Differ. Geom. Appl. 44: 161-177, 2016), (Misawa in Nonlinear Anal. 75: 5971-5974, 2012), (Misawa in Calc. Var. Part. Differ. Equ. 55: 1-20, 2016), (Misawa in Adv. Differ. Equ. 23: 693-724, 2018), (Misawa in Equ. Appl. 2: 1-20, 2021), (Misawa in Adv. Geom. 22: 23-31, 2022), (Nakauchi in Nonlinear Anal. 108: 87-98, 2014) and (Nakauchi in Ricerche di Matematica 60: 219-235, 2011). In this paper, we are concerned with rotationally symmetric maps. We prove that any rotationally symmetric map between 4-dimensional model spaces is a symphonic map if and only if it is a conformal map.
引用
收藏
页码:83 / 92
页数:9
相关论文
共 50 条
  • [31] Symmetries of locally rotationally symmetric models
    Sharif, M
    INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2005, 14 (10): : 1675 - 1684
  • [32] Component tracing of rotationally symmetric objects
    JOT, Journal fuer Oberflaechentechnik, 2022, 62 (09): : 26 - 27
  • [33] Rotationally symmetric internal gravity waves
    Ibragimov, Nail H.
    Ibragimov, Ranis N.
    INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2012, 47 (01) : 46 - 52
  • [34] Topological models in rotationally symmetric quasicrystals
    Duncan, Callum W.
    Manna, Sourav
    Nielsen, Anne E. B.
    Duncan, Callum W. (duncan@pks.mpg.de), 1600, American Physical Society (101):
  • [35] Motion in the rotationally symmetric potential field
    Agekian, T
    ORDER AND CHAOS IN STELLAR AND PLANETARY SYSTEMS, 2004, 316 : 3 - 9
  • [36] HARENODYNAMIC LANDING OF ROTATIONALLY SYMMETRIC BODIES
    LEMKE, EH
    ACTA ASTRONAUTICA, 1984, 11 (10-1) : 673 - 678
  • [37] Rotationally symmetric viscous gas flows
    W. Weigant
    P. I. Plotnikov
    Computational Mathematics and Mathematical Physics, 2017, 57 : 387 - 400
  • [38] THEORY OF ROTATIONALLY SYMMETRIC PLASTIC SHELLS
    HODGE, PG
    BULLETIN DE L ACADEMIE POLONAISE DES SCIENCES-SERIE DES SCIENCES TECHNIQUES, 1964, 12 (11AS): : 50 - &
  • [39] ROTATIONALLY SYMMETRIC PLANE STRESS DISTRIBUTIONS
    STERN, M
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1965, 45 (06): : 446 - &
  • [40] Topological models in rotationally symmetric quasicrystals
    Duncan, Callum W.
    Manna, Sourav
    Nielsen, Anne E. B.
    PHYSICAL REVIEW B, 2020, 101 (11)