Particle image velocimetry with optical flow

被引:0
|
作者
G. M. Quénot
J. Pakleza
T. A. Kowalewski
机构
[1] LIMSI-CNRS,
[2] BP 133 Université de Paris Sud,undefined
[3] Bâtiment 508 F-91403 Orsay Cedex,undefined
[4] France,undefined
[5] IPPT PAN,undefined
[6] Centre of Mechanics Polish Academy of Sciences PL-00-049 Warszawa,undefined
[7] Poland,undefined
来源
Experiments in Fluids | 1998年 / 25卷
关键词
Noise Level; Velocity Field; Velocity Vector; Particle Image Velocimetry; Dynamic Program;
D O I
暂无
中图分类号
学科分类号
摘要
 An optical Flow technique based on the use of Dynamic Programming has been applied to Particle Image Velocimetry thus yielding a significant increase in the accuracy and spatial resolution of the velocity field. Results are presented for calibrated synthetic sequences of images and for sequences of real images taken for a thermally driven flow of water with a freezing front. The accuracy remains better than 0.5 pixel/frame for tested two-image sequences and 0.2 pixel/frame for four-image sequences, even with a 10% added noise level and allowing 10% of particles of appear or disappear. A velocity vector is obtained for every pixel of the image.
引用
收藏
页码:177 / 189
页数:12
相关论文
共 50 条
  • [1] Particle image velocimetry with optical flow
    Quenot, GM
    Pakleza, J
    Kowalewski, TA
    [J]. EXPERIMENTS IN FLUIDS, 1998, 25 (03) : 177 - 189
  • [2] The Optical Flow Method Research of Particle Image Velocimetry
    Wang Hongwei
    Huang Zhan
    Gong Jian
    Xiong Hongliang
    [J]. 2014 ASIA-PACIFIC INTERNATIONAL SYMPOSIUM ON AEROSPACE TECHNOLOGY, APISAT2014, 2015, 99 : 918 - 924
  • [3] Variational optical flow estimation for particle image velocimetry
    Ruhnau, P
    Kohlberger, T
    Schnörr, C
    Nobach, H
    [J]. EXPERIMENTS IN FLUIDS, 2005, 38 (01) : 21 - 32
  • [4] Variational optical flow estimation for particle image velocimetry
    P. Ruhnau
    T. Kohlberger
    C. Schnörr
    H. Nobach
    [J]. Experiments in Fluids, 2005, 38 : 21 - 32
  • [5] Deep recurrent optical flow learning for particle image velocimetry data
    Lagemann, Christian
    Lagemann, Kai
    Mukherjee, Sach
    Schroder, Wolfgang
    [J]. NATURE MACHINE INTELLIGENCE, 2021, 3 (07) : 641 - 651
  • [6] Optimization Method of Optical Flow Pyramid Interpolation for Particle Image Velocimetry
    Shan Liang
    Jian Juan
    Xiong Junzhe
    Shi Feiyang
    Hong Bo
    Lou Xiaoying
    Kong Ming
    [J]. ACTA PHOTONICA SINICA, 2024, 53 (03)
  • [7] Deep recurrent optical flow learning for particle image velocimetry data
    Christian Lagemann
    Kai Lagemann
    Sach Mukherjee
    Wolfgang Schröder
    [J]. Nature Machine Intelligence, 2021, 3 : 641 - 651
  • [8] Particle image velocimetry combining unsupervised learning and optical flow model
    Shan, Liang
    Lou, Xiao-Ying
    Hong, Bo
    Xiong, Jun-Zhe
    Jian, Juan
    Kong, Ming
    [J]. OPTICS COMMUNICATIONS, 2024, 554
  • [9] Blood Flow Velocimetry in a Microchannel During Coagulation Using Particle Image Velocimetry and Wavelet-Based Optical Flow Velocimetry
    Kucukal, E.
    Man, Y.
    Gurkan, Umut A.
    Schmidt, B. E.
    [J]. JOURNAL OF BIOMECHANICAL ENGINEERING-TRANSACTIONS OF THE ASME, 2021, 143 (09):
  • [10] Optical flow of non-integer order in particle image velocimetry techniques
    Gonzalez-Acuna, Rafael G.
    Davila, A.
    Gutierrez-Vega, Julio C.
    [J]. SIGNAL PROCESSING, 2019, 155 : 317 - 322