Vanishing coefficients in three families of products of theta functions

被引:0
|
作者
Dazhao Tang
机构
[1] Chongqing Normal University,School of Mathematical Sciences
关键词
Vanishing coefficients; Products of theta functions; Arithmetic progressions; 11F27; 11B65; 30B10;
D O I
暂无
中图分类号
学科分类号
摘要
Recently, vanishing coefficients with arithmetic progressions in various products of theta functions were subsequently considered by the author, Baruah and Kaur, Xia and the author, Mc Laughlin, and Vandna and Kaur. In this paper, we further investigate this phenomenon in three families of products of theta functions, and prove that some arithmetic progressions on vanishing coefficients could be enjoyed by a family of products of theta functions, which significantly extend the previous results. For instance, one result proved in the present paper is that if the sequence {γj,k,r,s,t(n)}n≥n0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{\gamma _{j,k,r,s,t}(n)\}_{n\ge n_0}$$\end{document} is defined by ∑n=n0∞γj,k,r,s,t(n)qn=(-qj,-qr-j;qr)∞s(qk,q2r-k;q2r)∞t,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \sum _{n=n_0}^\infty \gamma _{j,k,r,s,t}(n)q^n=(-q^j,-q^{r-j};q^r )_\infty ^s(q^k,q^{2r-k};q^{2r})_\infty ^t, \end{aligned}$$\end{document}then γk,5ℓ-k,5ℓ,1,3(5n+3k)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _{k,5\ell -k,5\ell ,1,3}(5n+3k)=0$$\end{document} holds for all n, where ℓ≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell \ge 1$$\end{document}, 1≤k≤5ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\le k\le 5\ell $$\end{document} and gcd(k,5)=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gcd (k,5)=1$$\end{document}. Finally, we present two related conjectures.
引用
收藏
相关论文
共 50 条
  • [41] Several identities for certain products of theta functions
    Yan, Qinglun
    RAMANUJAN JOURNAL, 2009, 19 (01): : 79 - 94
  • [42] Families of identities involving universal mock theta functions
    Song, Hanfei
    Wang, Chun
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2023, 19 (06) : 1453 - 1472
  • [43] VANISHING THETA CONSTANTS
    FARKAS, HM
    ANNALS OF MATHEMATICS STUDIES, 1981, (97): : 101 - 106
  • [44] Vanishing and non-vanishing theta values
    Cohen H.
    Zagier D.
    Annales mathématiques du Québec, 2013, 37 (1) : 45 - 61
  • [45] VANISHING PROPERTIES OF THETA FUNCTIONS FOR ABELIAN COVERS OF RIEMANN SURFACES .1.
    ACCOLA, RDM
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1971, 18 (02): : 407 - &
  • [46] Some families of starlike functions with negative coefficients
    Aouf, MK
    Srivastava, HM
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1996, 203 (03) : 762 - 790
  • [48] On certain families of analytic functions with negative coefficients
    Aouf, MK
    Hossen, HM
    Lashin, AY
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2000, 31 (08): : 999 - 1015
  • [49] Three-parameter mock theta functions
    Cui, Su-Ping
    Gu, Nancy S. S.
    Hou, Qing -Hu
    Su, Chen-Yang
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 515 (02)
  • [50] Uniform asymptotic formulas for the Fourier coefficients of the inverse of theta functions
    Liu, Zhi-Guo
    Zhou, Nian Hong
    RAMANUJAN JOURNAL, 2022, 57 (03): : 1085 - 1123