On the hydrostatic and Darcy limits of the convective Navier-Stokes equations

被引:0
|
作者
Yann Brenier
机构
[1] Université de Nice (FR 2800 W. Döblin),U.M.R. CNRS 6621
[2] Institut Universitaire de France,undefined
关键词
Atmospheric sciences; Fluid mechanics; Asymptotic analysis; 86A10; 35Q35; 76B99; 86A05;
D O I
暂无
中图分类号
学科分类号
摘要
The author studies two singular limits of the convective Navier-Stokes equations. The hydrostatic limit is first studied: the author shows the existence of global solutions with a convex pressure field and derives them from the convective Navier-Stokes equations as long as the pressure field is smooth and strongly convex. The (friction dominated) Darcy limit is also considered, and a relaxed version is studied.
引用
收藏
页码:683 / 696
页数:13
相关论文
共 50 条
  • [31] A Multilayer Method for the Hydrostatic Navier-Stokes Equations: A Particular Weak Solution
    E. D. Fernández-Nieto
    E. H. Koné
    T. Chacón Rebollo
    Journal of Scientific Computing, 2014, 60 : 408 - 437
  • [32] Solving non-hydrostatic Navier-Stokes equations with a free surface
    Hervouet, JM
    COASTAL ENGINEERING VI: COMPUTER MODELLING AND EXPERIMENTAL MEASUREMENTS OF SEAS AND COASTAL REGIONS, 2003, 9 : 3 - 12
  • [33] A Multilayer Method for the Hydrostatic Navier-Stokes Equations: A Particular Weak Solution
    Fernandez-Nieto, E. D.
    Kone, E. H.
    Chacon Rebollo, T.
    JOURNAL OF SCIENTIFIC COMPUTING, 2014, 60 (02) : 408 - 437
  • [34] Stokes and Navier-Stokes equations with Navier boundary condition
    Acevedo, Paul
    Amrouche, Cherif
    Conca, Carlos
    Ghosh, Amrita
    COMPTES RENDUS MATHEMATIQUE, 2019, 357 (02) : 115 - 119
  • [35] Stokes and Navier-Stokes equations with Navier boundary conditions
    Acevedo Tapia, P.
    Amrouche, C.
    Conca, C.
    Ghosh, A.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 285 : 258 - 320
  • [36] Numerical analysis of the Navier-Stokes/Darcy coupling
    Badea, Lori
    Discacciati, Marco
    Quarteroni, Alfio
    NUMERISCHE MATHEMATIK, 2010, 115 (02) : 195 - 227
  • [37] The Transition Between the Navier-Stokes Equations to the Darcy Equation in a Thin Porous Medium
    Anguiano, Maria
    Javier Suarez-Grau, Francisco
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2018, 15 (02)
  • [38] Convergence of IPDG for coupled time-dependent Navier-Stokes and Darcy equations
    Chaabane, Nabil
    Girault, Vivette
    Puelz, Charles
    Riviere, Beatrice
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2017, 324 : 25 - 48
  • [39] COUPLING OF DARCY-FORCHHEIMER AND COMPRESSIBLE NAVIER-STOKES EQUATIONS WITH HEAT TRANSFER
    Amara, M.
    Capatina, D.
    Lizaik, L.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2009, 31 (02): : 1470 - 1499
  • [40] A New Discretization Method for the Convective Terms in the Incompressible Navier-Stokes Equations
    Kumar, N.
    Boonkkamp, J. H. M. ten Thije
    Koren, B.
    FINITE VOLUMES FOR COMPLEX APPLICATIONS VII - METHODS AND THEORETICAL ASPECTS, 2014, 77 : 363 - 371