Non-commutative harmonic oscillator in magnetic field and continuous limit

被引:0
|
作者
Jian Jing
Jian-Feng Chen
机构
[1] Beijing University of Chemical Technology,Key Lab for Nanomaterials, Ministry of Education
[2] Beijing University of Chemical Technology,Department of Physics and Electronic, School of Science
来源
关键词
11.10.Ef; 11.10.Nx;
D O I
暂无
中图分类号
学科分类号
摘要
The spectra of a charged harmonic oscillator minimally coupled to a perpendicular magnetic field in the non-commutative plane are studied by using the path integral formulation. We get the spectra in a mapping-independent way. Interestingly, we find that the spectra have no continuous limit when the dimensionless parameter tends to zero. In order to get a finite result, a truncation is inevitable. Finally, we give a reasonable explanation of truncation from the constrained theory point of view.
引用
收藏
页码:669 / 674
页数:5
相关论文
共 50 条
  • [31] Exact solution to two dimensional Dunkl harmonic oscillator in the Non-Commutative phase-space
    Hassanabadi, S.
    Sedaghatnia, P.
    Chung, W. S.
    Lutfuoglu, B. C.
    Kriz, J.
    Hassanabadi, H.
    EUROPEAN PHYSICAL JOURNAL PLUS, 2023, 138 (04):
  • [32] Anisotropic harmonic oscillator, non-commutative Landau problem and exotic Newton-Hooke symmetry
    Alvarez, Pedro D.
    Gomis, Joaquim
    Kamimura, Kiyoshi
    Plyushchay, Mikhail S.
    PHYSICS LETTERS B, 2008, 659 (05) : 906 - 912
  • [33] Exact solution to two dimensional Dunkl harmonic oscillator in the Non-Commutative phase-space
    S. Hassanabadi
    P. Sedaghatnia
    W. S. Chung
    B. C. Lütfüoğlu
    J. Kr̆iz̆
    H. Hassanabadi
    The European Physical Journal Plus, 138
  • [34] A mapping-independent analysis for the spectra of the non-commutative two-dimensional harmonic oscillator
    Jing, Jian
    Ma, Jun-Ying
    Guo, Yong-Hong
    Chen, Jian-Feng
    EUROPEAN PHYSICAL JOURNAL C, 2008, 56 (04): : 591 - 595
  • [35] Renormalisation of non-commutative field theories
    Rivasseau, Vincent
    Vignes-Tourneret, Fabien
    RENORMALIZATION AND GALOIS THEORIES, 2009, 15 : 39 - +
  • [36] Simulating non-commutative field theory
    Bietenholz, W
    Hofheinz, F
    Nishimura, J
    NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2003, 119 : 941 - 946
  • [37] On the Borchers class of a non-commutative field
    Franco, DHT
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (25): : 5799 - 5807
  • [38] Dirac Oscillator in a Galilean Covariant Non-commutative Space
    G. R. de Melo
    M. de Montigny
    P. J. Pompeia
    E. S. Santos
    International Journal of Theoretical Physics, 2013, 52 : 441 - 457
  • [39] On the renormalization of non-commutative field theories
    Daniel N. Blaschke
    Thomas Garschall
    François Gieres
    Franz Heindl
    Manfred Schweda
    Michael Wohlgenannt
    The European Physical Journal C, 2013, 73
  • [40] On the renormalization of non-commutative field theories
    Blaschke, Daniel N.
    Garschall, Thomas
    Gieres, Francois
    Heindl, Franz
    Schweda, Manfred
    Wohlgenannt, Michael
    EUROPEAN PHYSICAL JOURNAL C, 2013, 73 (01): : 1 - 17