Unenhanced abdominal low-dose CT reconstructed with deep learning-based image reconstruction: image quality and anatomical structure depiction

被引:0
|
作者
Tetsuro Kaga
Yoshifumi Noda
Takayuki Mori
Nobuyuki Kawai
Toshiharu Miyoshi
Fuminori Hyodo
Hiroki Kato
Masayuki Matsuo
机构
[1] Gifu University,Department of Radiology
[2] Gifu University Hospital,Department of Radiology Services
[3] Gifu University,Department of Radiology, Frontier Science for Imaging
来源
关键词
Unenhanced abdominal low-dose CT; Deep learning-based image reconstruction; Abdominal anatomical structures depiction; CT dose-index volume; Size-specific dose estimates;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:703 / 711
页数:8
相关论文
共 50 条
  • [21] Quantitative Comparison of Deep Learning-Based Image Reconstruction Methods for Low-Dose and Sparse-Angle CT Applications
    Leuschner, Johannes
    Schmidt, Maximilian
    Ganguly, Poulami Somanya
    Andriiashen, Vladyslav
    Coban, Sophia Bethany
    Denker, Alexander
    Bauer, Dominik
    Hadjifaradji, Amir
    Batenburg, Kees Joost
    Maass, Peter
    van Eijnatten, Maureen
    JOURNAL OF IMAGING, 2021, 7 (03)
  • [22] Low-Dose Abdominal CT Using a Deep Learning-Based Denoising Algorithm: A Comparison with CT Reconstructed with Filtered Back Projection or Iterative Reconstruction Algorithm
    Shin, Yoon Joo
    Chang, Won
    Ye, Jong Chul
    Kang, Eunhee
    Oh, Dong Yul
    Lee, Yoon Jin
    Park, Ji Hoon
    Kim, Young Hoon
    KOREAN JOURNAL OF RADIOLOGY, 2020, 21 (03) : 356 - 364
  • [23] Image Quality and Diagnostic Performance of Low-Dose Liver CT with Deep Learning Reconstruction versus Standard-Dose CT
    Lee, Dong Ho
    Lee, Jeong Min
    Lee, Chang Hee
    Afat, Saif
    Othman, Ahmed
    RADIOLOGY-ARTIFICIAL INTELLIGENCE, 2024, 6 (02)
  • [24] Improved image quality in CT pulmonary angiography using deep learning-based image reconstruction
    Ann-Christin Klemenz
    Lasse Albrecht
    Mathias Manzke
    Antonia Dalmer
    Benjamin Böttcher
    Alexey Surov
    Marc-André Weber
    Felix G. Meinel
    Scientific Reports, 14
  • [25] Improved image quality in CT pulmonary angiography using deep learning-based image reconstruction
    Klemenz, Ann-Christin
    Albrecht, Lasse
    Manzke, Mathias
    Dalmer, Antonia
    Boettcher, Benjamin
    Surov, Alexey
    Weber, Marc-Andre
    Meinel, Felix G.
    SCIENTIFIC REPORTS, 2024, 14 (01)
  • [26] Learning-Based Artifact Removal via Image Decomposition for Low-Dose CT Image Processing
    Cui, Xue-Ying
    Gui, Zhi-Guo
    Zhang, Quan
    Shangguan, Hong
    Wang, An-Hong
    IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2016, 63 (03) : 1860 - 1873
  • [27] LOW DOSE ABDOMINAL CT IMAGE RECONSTRUCTION: AN UNSUPERVISED LEARNING BASED APPROACH
    Kuanar, Shiba
    Athitsos, Vassilis
    Mahapatra, Dwarikanath
    Rao, K. R.
    Akhtar, Zahid
    Dasgupta, Dipankar
    2019 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2019, : 1351 - 1355
  • [28] Impact of deep learning image reconstruction on volumetric accuracy and image quality of pulmonary nodules with different morphologies in low-dose CT
    D'hondt, L.
    Franck, C.
    Kellens, P-j.
    Zanca, F.
    Buytaert, D.
    Van Hoyweghen, A.
    El Addouli, H.
    Carpentier, K.
    Niekel, M.
    Spinhoven, M.
    Bacher, K.
    Snoeckx, A.
    CANCER IMAGING, 2024, 24 (01)
  • [29] A study of using a deep learning image reconstruction to improve the image quality of extremely low-dose contrast-enhanced abdominal CT for patients with hepatic lesions
    Cao, Le
    Liu, Xiang
    Li, Jianying
    Qu, Tingting
    Chen, Lihong
    Cheng, Yannan
    Hu, Jieliang
    Sun, Jingtao
    Guo, Jianxin
    BRITISH JOURNAL OF RADIOLOGY, 2021, 94 (1118):
  • [30] Deep learning reconstruction allows low-dose imaging while maintaining image quality: comparison of deep learning reconstruction and hybrid iterative reconstruction in contrast-enhanced abdominal CT
    Tamura, Akio
    Mukaida, Eisuke
    Ota, Yoshitaka
    Nakamura, Iku
    Arakita, Kazumasa
    Yoshioka, Kunihiro
    QUANTITATIVE IMAGING IN MEDICINE AND SURGERY, 2022, 12 (05) : 2977 - 2984