Influence of the representation of landfast ice on the simulation of the Arctic sea ice and Arctic Ocean halocline

被引:0
|
作者
Sterlin, Jean [1 ]
Orval, Tim [1 ]
Lemieux, Jean-Francois [2 ]
Rousset, Clement [3 ]
Fichefet, Thierry [1 ]
Massonnet, Francois [1 ]
Raulier, Jonathan [1 ]
机构
[1] Catholic Univ Louvain, Earth & Life Inst, B-1348 Louvain La Neuve, Belgium
[2] Environm & Changement Climat Canada, Rech Previs Numer Environm, Dorval, PQ, Canada
[3] Inst Pierre Simon Laplace, Lab Oceanog & Climat Experimentat & Approches Nume, 4 Pl Jussieu, F-75005 Paris, France
基金
欧盟地平线“2020”;
关键词
Arctic landfast ice; Arctic Ocean halocline; Available potential energy; Sea ice model; Ocean general circulation model; INTERANNUAL VARIABILITY; THICKNESS DISTRIBUTION; LAPTEV SEA; MODEL; WATER; DRIFT; BEAUFORT; LAYER; CIRCULATION; STRENGTH;
D O I
10.1007/s10236-024-01611-0
中图分类号
P7 [海洋学];
学科分类号
0707 ;
摘要
Landfast ice is near-motionless sea ice attached to the coast. Despite its potential for modifying sea ice and ocean properties, most state-of-the-art sea ice models poorly represent landfast ice. Here, we examine two crucial processes responsible for the formation and stabilization of landfast ice, namely sea ice tensile strength and seabed-ice keel interactions. We investigate the impact of these processes on the Arctic sea ice cover and halocline layer using the global coupled ocean-sea ice model NEMO-LIM3. We show that including seabed-ice keel stress improves the seasonality and spatial distribution of the landfast ice cover in the Laptev and East Siberian Seas. This improved landfast ice representation sets the position of flaw polynyas to new locations approximately above the continental shelf break. The impact of sea ice tensile strength on the stability of the Arctic halocline layer is far more effective. Incorporating this process in the model yields a thicker, more consolidated, and less mobile Arctic sea ice pack that further decouples the ocean and atmosphere. As a result, the available potential energy of the Arctic halocline is decreased (increased) by similar to\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sim $$\end{document}30kJ/m2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<^>2$$\end{document} (similar to\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sim $$\end{document}30kJ/m2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<^>2$$\end{document}) in the Amerasian (Eurasian) compared to the reference simulation excluding sea ice tensile strength and seabed-ice keel stress. Our findings highlight the need to better understand landfast ice physical processes conjointly with the subsequent influences on the ocean and sea ice states.
引用
收藏
页码:407 / 437
页数:31
相关论文
共 50 条
  • [41] The emergence of modern sea ice cover in the Arctic Ocean
    Knies, Jochen
    Cabedo-Sanz, Patricia
    Belt, Simon T.
    Baranwal, Soma
    Fietz, Susanne
    Rosell-Mele, Antoni
    NATURE COMMUNICATIONS, 2014, 5
  • [42] Pacific Ocean inflow: Influence on catastrophic reduction of sea ice cover in the Arctic Ocean
    Shimada, K
    Kamoshida, T
    Itoh, M
    Nishino, S
    Carmack, E
    McLaughlin, F
    Zimmermann, S
    Proshutinsky, A
    GEOPHYSICAL RESEARCH LETTERS, 2006, 33 (08)
  • [43] An abrupt decline of thick sea ice in the Arctic Ocean
    Sumata, Hiroshi
    de Steur, Laura
    NATURE, 2023,
  • [44] Depletion of perennial sea ice in the East Arctic Ocean
    Nghiem, S. V.
    Chao, Y.
    Neumann, G.
    Li, P.
    Perovich, D. K.
    Street, T.
    Clemente-Colon, P.
    GEOPHYSICAL RESEARCH LETTERS, 2006, 33 (17)
  • [45] Arctic Ocean 2018-Researchers examine Clouds and Sea Ice in the Arctic
    不详
    HYDROLOGIE UND WASSERBEWIRTSCHAFTUNG, 2018, 62 (05): : 350 - 351
  • [46] Effectiveness of wind-constrained sea-ice momentum on formation of sea-ice distribution and upper halocline of Arctic Ocean in climate model
    Ono, Jun
    Komuro, Yoshiki
    Tatebe, Hiroaki
    Kimura, Noriaki
    ENVIRONMENTAL RESEARCH-CLIMATE, 2024, 3 (03):
  • [47] Nudging the Arctic Ocean to Quantify Sea Ice Feedbacks
    Dekker, Evelien
    Bintanja, Richard
    Severijns, Camiel
    JOURNAL OF CLIMATE, 2019, 32 (08) : 2381 - 2395
  • [48] Evaluating sea ice thickness simulation is critical for projecting a summer ice-free Arctic Ocean
    Zhou, Xiao
    Wang, Bin
    Huang, Fei
    ENVIRONMENTAL RESEARCH LETTERS, 2022, 17 (11)
  • [49] ON THE HALOCLINE OF THE ARCTIC OCEAN
    AAGAARD, K
    COACHMAN, LK
    CARMACK, E
    DEEP-SEA RESEARCH PART A-OCEANOGRAPHIC RESEARCH PAPERS, 1981, 28 (06): : 529 - &
  • [50] The effect of sea-ice parameterizations on the simulation of the Arctic ice pack
    Vavrus, SJ
    ANNALS OF GLACIOLOGY, VOL 25, 1997: PAPERS FROM THE INTERNATIONAL SYMPOSIUM ON REPRESENTATION OF THE CRYOSPHERE IN CLIMATE AND HYDROLOGICAL MODELS HELD AT VICTORIA, BRITISH COLUMBIA, CANADA, 12-15 AUGUST 1996, 1997, 25 : 12 - 16