Influence of the representation of landfast ice on the simulation of the Arctic sea ice and Arctic Ocean halocline

被引:0
|
作者
Sterlin, Jean [1 ]
Orval, Tim [1 ]
Lemieux, Jean-Francois [2 ]
Rousset, Clement [3 ]
Fichefet, Thierry [1 ]
Massonnet, Francois [1 ]
Raulier, Jonathan [1 ]
机构
[1] Catholic Univ Louvain, Earth & Life Inst, B-1348 Louvain La Neuve, Belgium
[2] Environm & Changement Climat Canada, Rech Previs Numer Environm, Dorval, PQ, Canada
[3] Inst Pierre Simon Laplace, Lab Oceanog & Climat Experimentat & Approches Nume, 4 Pl Jussieu, F-75005 Paris, France
基金
欧盟地平线“2020”;
关键词
Arctic landfast ice; Arctic Ocean halocline; Available potential energy; Sea ice model; Ocean general circulation model; INTERANNUAL VARIABILITY; THICKNESS DISTRIBUTION; LAPTEV SEA; MODEL; WATER; DRIFT; BEAUFORT; LAYER; CIRCULATION; STRENGTH;
D O I
10.1007/s10236-024-01611-0
中图分类号
P7 [海洋学];
学科分类号
0707 ;
摘要
Landfast ice is near-motionless sea ice attached to the coast. Despite its potential for modifying sea ice and ocean properties, most state-of-the-art sea ice models poorly represent landfast ice. Here, we examine two crucial processes responsible for the formation and stabilization of landfast ice, namely sea ice tensile strength and seabed-ice keel interactions. We investigate the impact of these processes on the Arctic sea ice cover and halocline layer using the global coupled ocean-sea ice model NEMO-LIM3. We show that including seabed-ice keel stress improves the seasonality and spatial distribution of the landfast ice cover in the Laptev and East Siberian Seas. This improved landfast ice representation sets the position of flaw polynyas to new locations approximately above the continental shelf break. The impact of sea ice tensile strength on the stability of the Arctic halocline layer is far more effective. Incorporating this process in the model yields a thicker, more consolidated, and less mobile Arctic sea ice pack that further decouples the ocean and atmosphere. As a result, the available potential energy of the Arctic halocline is decreased (increased) by similar to\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sim $$\end{document}30kJ/m2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<^>2$$\end{document} (similar to\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sim $$\end{document}30kJ/m2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<^>2$$\end{document}) in the Amerasian (Eurasian) compared to the reference simulation excluding sea ice tensile strength and seabed-ice keel stress. Our findings highlight the need to better understand landfast ice physical processes conjointly with the subsequent influences on the ocean and sea ice states.
引用
收藏
页码:407 / 437
页数:31
相关论文
共 50 条
  • [1] Landfast ice affects the stability of the Arctic halocline: Evidence from a numerical model
    Itkin, Polona
    Losch, Martin
    Gerdes, Ruediger
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2015, 120 (04) : 2622 - 2635
  • [2] Variability and climate sensitivity of landfast Arctic sea ice
    Flato, GM
    Brown, RD
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 1996, 101 (C11) : 25767 - 25777
  • [3] Thermal conductivity of landfast Antarctic and Arctic sea ice
    Pringle, D. J.
    Eicken, H.
    Trodahl, H. J.
    Backstrom, L. G. E.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2007, 112 (C4)
  • [4] An Arctic Sea Ice Simulation Using an Ocean-Ice Coupled Model
    Sun Hong-Chuan
    Zhou Guang-Qing
    [J]. ATMOSPHERIC AND OCEANIC SCIENCE LETTERS, 2010, 3 (04) : 219 - 223
  • [5] An Arctic Sea Ice Simulation Using an Ocean-Ice Coupled Model
    SUN Hong-Chuan~1
    [J]. Atmospheric and Oceanic Science Letters, 2010, 3 (04) : 219 - 223
  • [6] Sea ice atlas for the Arctic Ocean
    不详
    [J]. MARINE POLLUTION BULLETIN, 2000, 40 (12) : 1069 - 1069
  • [7] Physics of Arctic landfast sea ice and implications on the cryosphere: an overview
    ZHAI Mengxi
    Matti LEPP?RANTA
    Bin CHENG
    LEI Ruibo
    ZHANG Fanyi
    [J]. Advances in Polar Science, 2021, 32 (04) : 281 - 294
  • [8] Weakening of Cold Halocline Layer Exposes Sea Ice to Oceanic Heat in the Eastern Arctic Ocean
    Polyakova, Igor, V
    Rippeth, Tom P.
    Fer, Ilker
    Alkire, Matthew B.
    Baumann, Till M.
    Carmack, Eddy C.
    Ingvaldsen, Randi
    Ivanov, Vladimir V.
    Janout, Markus
    Lind, Sigrid
    Padman, Laurie
    Pnyushkov, Andrey, V
    Rember, Robert
    [J]. JOURNAL OF CLIMATE, 2020, 33 (18) : 8107 - 8123
  • [9] FOLLOW THAT ICE! TRACKING SEA ICE FREEBOARD IN THE ARCTIC OCEAN
    Tschudi, Mark
    Meier, Walter
    Stewart, J. Scott
    [J]. IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 75 - 78
  • [10] The Impact of Tides on Simulated Landfast Ice in a Pan-Arctic Ice-Ocean Model
    Lemieux, Jean-Francois
    Lei, Ji
    Dupont, Frederic
    Roy, Francois
    Losch, Martin
    Lique, Camille
    Laliberte, Frederic
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2018, 123 (11) : 7747 - 7762