Feasibility of preparing self-compacting mortar via municipal solid waste incineration bottom ash: an experimental study

被引:19
|
作者
Wang, Qun [1 ]
Chu, Hongyan [1 ]
Shi, Wenfang [1 ]
Jiang, Jinyang [2 ]
Wang, Fengjuan [2 ]
机构
[1] Nanjing Forestry Univ, Coll Civil Engn, Nanjing 210037, Peoples R China
[2] Southeast Univ, Sch Mat Sci & Engn, Nanjing 211189, Peoples R China
基金
中国国家自然科学基金;
关键词
Self-compacting mortar; Mechanical property; Durability; Municipal solid waste incineration; Sustainability; Drying shrinkage; CEMENT; PERFORMANCE; REPLACEMENT; HYDRATION; SAND;
D O I
10.1007/s43452-023-00794-5
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
To date, incineration is the main method of municipal solid waste (MSW) disposal. Fly ash and bottom ash (BA) are generated in large amounts from municipal solid waste incineration (MSWI), but the disposal of incineration residues poses a significant challenge to large cities with limited landfill space. The feasibility of using MSWI-BA to replace natural sand in the preparation of self-compacting mortar (SCM) was investigated to realize the resource utilization of MSWI-BA. The changes in SCM regarding durability, mechanical properties and workability when MSWI-BA was added at varying ratios were explored in this study. In addition, the changes in SCM microstructure, dynamic modulus of elasticity (DME) and ultrasonic pulse velocity (UPV) under the impacts of MSWI-BA were investigated. Eventually, the environmental and economic effects of SCM were weighed via the material sustainability index. It was found that (1) there was a drop of 23.79-44.69% in the compressive strength of SCM and a drop of 12.22-30.99% in the flexural strength, due to the incorporation of MSWI-BA; (2) the drying shrinkage of SCM increased from 2.9 to 11.76%, and the chloride migration coefficient increased from 4.66 to 46.06%, due to the incorporation of MSWI-BA; (3) the production costs, carbon footprint and energy consumption of SCM could be reduced, due to the addition of MSWI-BA; and (4) SCM could satisfy the engineering requirements of durability, mechanical properties and workability. Therefore, MSWI-BA was found to be a feasible method for the production of SCM.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Impact of Municipal Solid Waste Incineration Bottom Ash as Cement Substitution
    Shi, Dongsheng
    Ren, Dongdong
    Ma, Zheng
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2024,
  • [22] Rapid evaluation quality of municipal solid waste incineration bottom ash
    Quilici, L
    Praud-Tabaries, A
    Bottzeck, O
    Tiliacos, N
    ENVIRONMENTAL TECHNOLOGY, 2003, 24 (08) : 989 - 998
  • [23] Leaching toxicity characteristics of municipal solid waste incineration bottom ash
    Khamphe PHOUNGTHONG
    Yi XIA
    Hua ZHANG
    Liming SHAO
    Pinjing HE
    Frontiers of Environmental Science & Engineering, 2016, 10 (02) : 399 - 411
  • [24] Biodegradable organic matter in municipal solid waste incineration bottom ash
    Zhang, S
    Herbell, JD
    Gaye-Haake, B
    WASTE MANAGEMENT, 2004, 24 (07) : 673 - 679
  • [25] PCDDs/PCDFs in Municipal Solid Waste Incineration Bottom Ash in Korea
    Ahn, Ji-Whan
    Han, Gi-Chun
    You, Kwang-Suk
    Cho, Hee-Chan
    GEOSYSTEM ENGINEERING, 2006, 9 (04) : 91 - 96
  • [26] To fractionate municipal solid waste incineration bottom ash: Key for utilisation?
    Sormunen, Laura Annika
    Rantsi, Riina
    WASTE MANAGEMENT & RESEARCH, 2015, 33 (11) : 995 - 1004
  • [27] Characterisation of bottom ash from municipal solid waste incineration in Catalonia
    Izquierdo, M
    López-Soler, A
    Ramonich, EV
    Barra, M
    Querol, X
    JOURNAL OF CHEMICAL TECHNOLOGY AND BIOTECHNOLOGY, 2002, 77 (05) : 576 - 583
  • [28] Utilization of municipal solid waste incineration bottom ash in blended cement
    Li, Xiang-Guo
    Lv, Yang
    Ma, Bao-Guo
    Chen, Quan-Bin
    Yin, Xiao-Bo
    Jian, Shou-Wei
    JOURNAL OF CLEANER PRODUCTION, 2012, 32 : 96 - 100
  • [29] Leaching toxicity characteristics of municipal solid waste incineration bottom ash
    Khamphe Phoungthong
    Yi Xia
    Hua Zhang
    Liming Shao
    Pinjing He
    Frontiers of Environmental Science & Engineering, 2016, 10 : 399 - 411
  • [30] Conversion of Municipal Solid Waste Incineration Bottom Ash in Asphalt Pavements
    Yan, Kezhen
    Li, Lanlan
    Long, Zhengwu
    Xiao, Leling
    Liu, Kai
    Zhou, Wujun
    You, Lingyun
    Ou, Jianliang
    Wu, Shenghua
    ADVANCES IN CIVIL ENGINEERING MATERIALS, 2022, 11 (01): : 138 - 154