Global Wellposedness for a Certain Class of Large Initial Data for the 3D Navier–Stokes Equations

被引:2
|
作者
Percy Wong
机构
[1] Program in Applied and Computational Mathematics,
来源
Annales Henri Poincaré | 2014年 / 15卷
关键词
Initial Data; Stokes Equation; Heat Equation; Besov Space; Stokes System;
D O I
暂无
中图分类号
学科分类号
摘要
In this article, we consider a special class of initial data to the 3D Navier–Stokes equations on the torus, in which there is a certain degree of orthogonality in the components of the initial data. We showed that, under such conditions, the Navier–Stokes equations are globally wellposed. We also showed that there exists large initial data, in the sense of the critical norm \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${B^{-1}_{\infty,\infty}}$$\end{document} that satisfies the conditions that we considered.
引用
收藏
页码:633 / 643
页数:10
相关论文
共 50 条
  • [41] A class of solutions of the Navier-Stokes equations with large data
    Kukavica, Igor
    Rusin, Walter
    Ziane, Mohammed
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 255 (07) : 1492 - 1514
  • [42] Global Well-Posedness of the Generalized Incompressible Navier–Stokes Equations with Large Initial Data
    Qiao Liu
    Bulletin of the Malaysian Mathematical Sciences Society, 2020, 43 : 2549 - 2564
  • [43] Global Solution to the Incompressible Inhomogeneous Navier-Stokes Equations with Some Large Initial Data
    Xu, Huan
    Li, Yongsheng
    Chen, Fei
    JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2017, 19 (02) : 315 - 328
  • [44] Global strong solutions to the 3D incompressible Navier-Stokes equations with large external force
    Yu, Haibo
    JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (07)
  • [45] The global solutions of axisymmetric Navier–Stokes equations with anisotropic initial data
    Hui Chen
    Daoyuan Fang
    Ting Zhang
    Zeitschrift für angewandte Mathematik und Physik, 2019, 70
  • [46] On the global wellposedness for the nonlinear Schrodinger equations with Lp-large initial data
    Hyakuna, Ryosuke
    Tsutsumi, Masayoshi
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2011, 18 (03): : 309 - 327
  • [47] Global regularity to the 3D generalized MHD equations with large initial data
    Yu, Haibo
    Xu, Hao
    Zhu, Mingxuan
    APPLIED MATHEMATICS LETTERS, 2017, 68 : 117 - 121
  • [48] Energetic systems and global attractors for the 3D Navier-Stokes equations
    Bondarevsky, Vadim G.
    Nonlinear Analysis, Theory, Methods and Applications, 1997, 30 (02): : 799 - 810
  • [49] REMARKS ON GLOBAL ATTRACTORS FOR THE 3D NAVIER STOKES EQUATIONS WITH HORIZONTAL FILTERING
    Bisconti, Luca
    Catania, Davide
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2015, 20 (01): : 59 - 75
  • [50] The 3D Navier-Stokes Equations: Invariants, Local and Global Solutions
    Semenov, Vladimir, I
    AXIOMS, 2019, 8 (02)