Singular Integrals and Commutators in Generalized Morrey Spaces

被引:0
|
作者
Lubomiea Softova
机构
[1] Facoltà Di Ingegneria,Università Degli Studi Della Basilicata
来源
Acta Mathematica Sinica | 2006年 / 22卷
关键词
generalized Morrey spaces; singular integrals; commutators; Calderón–Zygmund kernel; BMO; VMO; 42B20;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a singular an integral operator \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\fancyscript K}$$\end{document} with a variable Calderón–Zygmund type kernel k(x; ξ), x ∈ ℝn, ξ ∈ ℝn\{0}, satisfying a mixed homogeneity condition of the form \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ k{\left( {x;\mu ^{{\alpha _{1} }} \xi _{1} , \ldots ,\mu ^{{\alpha _{n} }} \xi _{n} } \right)} = \mu ^{{ - {\sum\nolimits_{i = 1}^n {\alpha _{i} } }}} k{\left( {x;\xi } \right)},\alpha _{i} \geqslant 1 $$\end{document} and μ > 0. The continuity of this operator in Lp(ℝn) is well studied by Fabes and Rivière. Our goal is to extend their result to generalized Morrey spaces Lp,ω(ℝn), p ∈ (1,∞) with a weight ω satisfying suitable dabbling and integral conditions. A special attention is paid to the commutator \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\fancyscript C}$$\end{document} [a, k] = \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\fancyscript K}$$\end{document}a − a\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\fancyscript K}$$\end{document} with the operator of multiplication by BMO functions.
引用
收藏
页码:757 / 766
页数:9
相关论文
共 50 条
  • [31] Marcinkiewicz integrals associated with Schrodinger operator and their commutators on vanishing generalized Morrey spaces
    Akbulut, Ali
    Guliyev, Vagif S.
    Omarova, Mehriban N.
    [J]. BOUNDARY VALUE PROBLEMS, 2017,
  • [32] Commutators of Cauchy–Fantappiè Type Integrals on Generalized Morrey Spaces on Complex Ellipsoids
    Nguyen Anh Dao
    Xuan Thinh Duong
    Ly Kim Ha
    [J]. The Journal of Geometric Analysis, 2021, 31 : 7538 - 7567
  • [33] Commutators and generalized local Morrey spaces
    Guliyev, V. S.
    Omarova, M. N.
    Ragusa, M. A.
    Scapellato, A.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 457 (02) : 1388 - 1402
  • [34] Endpoint boundedness for commutators of singular integral operators on weighted generalized Morrey spaces
    Jinyun Qi
    Xuefang Yan
    Wenming Li
    [J]. Journal of Inequalities and Applications, 2020
  • [35] ROUGH SINGULAR INTEGRAL OPERATORS AND ITS COMMUTATORS ON GENERALIZED WEIGHTED MORREY SPACES
    Guliyev, Vagif S.
    Hamzayev, Vugar H.
    [J]. MATHEMATICAL INEQUALITIES & APPLICATIONS, 2016, 19 (03): : 863 - 881
  • [36] Φ-Admissible singular operators and their commutators on vanishing generalized Orlicz-Morrey spaces
    Vagif S. Guliyev
    Fatih Deringoz
    Javanshir J. Hasanov
    [J]. Journal of Inequalities and Applications, 2014
  • [37] Endpoint boundedness for commutators of singular integral operators on weighted generalized Morrey spaces
    Qi, Jinyun
    Yan, Xuefang
    Li, Wenming
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2020, 2020 (01)
  • [38] Φ-Admissible singular operators and their commutators on vanishing generalized Orlicz-Morrey spaces
    Guliyev, Vagif S.
    Deringoz, Fatih
    Hasanov, Javanshir J.
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2014,
  • [39] Commutators of parabolic fractional integrals with variable kernels in vanishing generalized variable Morrey spaces
    Ekincioglu, I
    Khaligova, S. Z.
    Serbetci, A.
    [J]. POSITIVITY, 2022, 26 (05)
  • [40] Commutators of parabolic fractional integrals with variable kernels in vanishing generalized variable Morrey spaces
    I. Ekincioglu
    S. Z. Khaligova
    A. Serbetci
    [J]. Positivity, 2022, 26