We consider a singular an integral operator \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\fancyscript K}$$\end{document} with a variable Calderón–Zygmund type kernel k(x; ξ), x ∈ ℝn, ξ ∈ ℝn\{0}, satisfying a mixed homogeneity condition of the form \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$
k{\left( {x;\mu ^{{\alpha _{1} }} \xi _{1} , \ldots ,\mu ^{{\alpha _{n} }} \xi _{n} } \right)} = \mu ^{{ - {\sum\nolimits_{i = 1}^n {\alpha _{i} } }}} k{\left( {x;\xi } \right)},\alpha _{i} \geqslant 1
$$\end{document} and μ > 0. The continuity of this operator in Lp(ℝn) is well studied by Fabes and Rivière. Our goal is to extend their result to generalized Morrey spaces Lp,ω(ℝn), p ∈ (1,∞) with a weight ω satisfying suitable dabbling and integral conditions. A special attention is paid to the commutator \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\fancyscript C}$$\end{document} [a, k] = \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\fancyscript K}$$\end{document}a − a\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\fancyscript K}$$\end{document} with the operator of multiplication by BMO functions.