Singular Integrals and Commutators in Generalized Morrey Spaces

被引:0
|
作者
Lubomiea Softova
机构
[1] Facoltà Di Ingegneria,Università Degli Studi Della Basilicata
来源
Acta Mathematica Sinica | 2006年 / 22卷
关键词
generalized Morrey spaces; singular integrals; commutators; Calderón–Zygmund kernel; BMO; VMO; 42B20;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a singular an integral operator \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\fancyscript K}$$\end{document} with a variable Calderón–Zygmund type kernel k(x; ξ), x ∈ ℝn, ξ ∈ ℝn\{0}, satisfying a mixed homogeneity condition of the form \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ k{\left( {x;\mu ^{{\alpha _{1} }} \xi _{1} , \ldots ,\mu ^{{\alpha _{n} }} \xi _{n} } \right)} = \mu ^{{ - {\sum\nolimits_{i = 1}^n {\alpha _{i} } }}} k{\left( {x;\xi } \right)},\alpha _{i} \geqslant 1 $$\end{document} and μ > 0. The continuity of this operator in Lp(ℝn) is well studied by Fabes and Rivière. Our goal is to extend their result to generalized Morrey spaces Lp,ω(ℝn), p ∈ (1,∞) with a weight ω satisfying suitable dabbling and integral conditions. A special attention is paid to the commutator \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\fancyscript C}$$\end{document} [a, k] = \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\fancyscript K}$$\end{document}a − a\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\fancyscript K}$$\end{document} with the operator of multiplication by BMO functions.
引用
收藏
页码:757 / 766
页数:9
相关论文
共 50 条
  • [1] Singular Integrals and Commutators in Generalized Morrey Spaces
    Lubomiea SOFTOVA
    [J]. Acta Mathematica Sinica,English Series, 2006, 22 (03) : 757 - 766
  • [2] Singular integrals and commutators in generalized Morrey spaces
    Softova, Lubomiea
    [J]. ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2006, 22 (03) : 757 - 766
  • [3] Commutators of Parabolic Singular Integrals on the Generalized Morrey Spaces
    Yanping CHEN
    Yong DING
    [J]. Acta Mathematicae Applicatae Sinica(English Series), 2014, 30 (02) : 367 - 378
  • [4] Commutators of Parabolic Singular Integrals on the Generalized Morrey Spaces
    Chen, Yan-ping
    Ding, Yong
    [J]. ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2014, 30 (02): : 367 - 378
  • [5] Commutators of Parabolic Singular Integrals on the Generalized Morrey Spaces
    Yan-ping CHEN
    Yong DING
    [J]. Acta Mathematicae Applicatae Sinica, 2014, (02) : 367 - 378
  • [6] Commutators of parabolic singular integrals on the generalized Morrey spaces
    Yan-ping Chen
    Yong Ding
    [J]. Acta Mathematicae Applicatae Sinica, English Series, 2014, 30 : 367 - 378
  • [8] p-adic singular integrals and their commutators in generalized Morrey spaces
    Mo, Hui X.
    Han, Zhe
    Yang, Liu
    Wang, Xiao J.
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2019, 2019 (1)
  • [9] p-adic singular integrals and their commutators in generalized Morrey spaces
    Hui X. Mo
    Zhe Han
    Liu Yang
    Xiao J. Wang
    [J]. Journal of Inequalities and Applications, 2019
  • [10] Compactness of Commutators for Singular Integrals on Morrey Spaces
    Chen, Yanping
    Ding, Yong
    Wang, Xinxia
    [J]. CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2012, 64 (02): : 257 - 281