Uniform finite-dimensional approximation of basic capacities of energy-constrained channels

被引:0
|
作者
M. E. Shirokov
机构
[1] Moscow Institute of Physics and Technology,Steklov Mathematical Institute
来源
关键词
Finite-dimensional subchannel; Energy constraint; -Restricted capacities; Quantum conditional mutual information; Strong convergence of channels; Energy-constrained diamond norm;
D O I
暂无
中图分类号
学科分类号
摘要
We consider energy-constrained infinite-dimensional quantum channels from a given system (satisfying a certain condition) to any other systems. We show that dealing with basic capacities of these channels we may assume (accepting arbitrarily small error ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document}) that all channels have the same finite-dimensional input space—the subspace corresponding to the m(ε)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m(\varepsilon )$$\end{document} minimal eigenvalues of the input Hamiltonian. We also show that for the class of energy-limited channels (mapping energy-bounded states to energy-bounded states) the above result is valid with substantially smaller dimension m(ε)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m(\varepsilon )$$\end{document}. The uniform finite-dimensional approximation allows us to prove the uniform continuity of the basic capacities on the set of all quantum channels with respect to the strong (pointwise) convergence topology. For all the capacities, we obtain continuity bounds depending only on the input energy bound and the energy-constrained diamond-norm distance between quantum channels (generating the strong convergence on the set of quantum channels).
引用
收藏
相关论文
共 50 条