Uniform finite-dimensional approximation of basic capacities of energy-constrained channels

被引:0
|
作者
M. E. Shirokov
机构
[1] Moscow Institute of Physics and Technology,Steklov Mathematical Institute
来源
关键词
Finite-dimensional subchannel; Energy constraint; -Restricted capacities; Quantum conditional mutual information; Strong convergence of channels; Energy-constrained diamond norm;
D O I
暂无
中图分类号
学科分类号
摘要
We consider energy-constrained infinite-dimensional quantum channels from a given system (satisfying a certain condition) to any other systems. We show that dealing with basic capacities of these channels we may assume (accepting arbitrarily small error ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document}) that all channels have the same finite-dimensional input space—the subspace corresponding to the m(ε)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m(\varepsilon )$$\end{document} minimal eigenvalues of the input Hamiltonian. We also show that for the class of energy-limited channels (mapping energy-bounded states to energy-bounded states) the above result is valid with substantially smaller dimension m(ε)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m(\varepsilon )$$\end{document}. The uniform finite-dimensional approximation allows us to prove the uniform continuity of the basic capacities on the set of all quantum channels with respect to the strong (pointwise) convergence topology. For all the capacities, we obtain continuity bounds depending only on the input energy bound and the energy-constrained diamond-norm distance between quantum channels (generating the strong convergence on the set of quantum channels).
引用
收藏
相关论文
共 50 条
  • [1] Uniform finite-dimensional approximation of basic capacities of energy-constrained channels
    Shirokov, M. E.
    QUANTUM INFORMATION PROCESSING, 2018, 17 (12)
  • [2] Energy-Constrained Private and Quantum Capacities of Quantum Channels
    Wilde, Mark M.
    Qi, Haoyu
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2018, 64 (12) : 7802 - 7827
  • [3] Finite-dimensional approximation properties for uniform Roe algebras
    Sako, Hiroki
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2020, 102 (02): : 623 - 644
  • [4] Energy-constrained two-way assisted private and quantum capacities of quantum channels
    Davis, Noah
    Shirokov, Maksim E.
    Wilde, Mark M.
    PHYSICAL REVIEW A, 2018, 97 (06)
  • [5] Finite-dimensional approximation of a class of constrained nonlinear optimal control problems
    Gunzburger, MD
    Hou, LS
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1996, 34 (03) : 1001 - 1043
  • [6] Bounding the energy-constrained quantum and private capacities of phase-insensitive bosonic Gaussian channels
    Sharma, Kunal
    Wilde, Mark M.
    Adhikari, Sushovit
    Takeoka, Masahiro
    NEW JOURNAL OF PHYSICS, 2018, 20
  • [7] Energy-constrained error control for wireless channels
    Zorzi, M
    Rao, RR
    IEEE PERSONAL COMMUNICATIONS, 1997, 4 (06): : 27 - 33
  • [8] Energy-constrained error control for wireless channels
    Univ of California at San Diego, San Diego, United States
    IEEE Pers Commun, 6 (27-33):
  • [9] FINITE-DIMENSIONAL APPROXIMATION OF THE SCATTERING MATRIX
    KROGER, H
    SMAILAGIC, A
    GIRARD, R
    CANADIAN JOURNAL OF PHYSICS, 1986, 64 (05) : 611 - 616
  • [10] Finite-dimensional approximation of Gaussian processes
    Trecate, GF
    Williams, CKI
    Opper, M
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 11, 1999, 11 : 218 - 224