Self-consistent residual dipolar coupling based model-free analysis for the robust determination of nanosecond to microsecond protein dynamics

被引:0
|
作者
Nils-Alexander Lakomek
Korvin F. A. Walter
Christophe Farès
Oliver F. Lange
Bert L. de Groot
Helmut Grubmüller
Rafael Brüschweiler
Axel Munk
Stefan Becker
Jens Meiler
Christian Griesinger
机构
[1] Max-Planck Institute for Biophysical Chemistry,Department for NMR
[2] Max-Planck Institute for Biophysical Chemistry,based Structural Biology
[3] Florida State University,Department for Theoretical and Computational Biophysics
[4] University of Goettingen,NHFML
[5] Vanderbilt University,Institut for Mathematical Stochastics
来源
关键词
Dynamics; Proteins; RDCs; Structural noise; Ubiquitin;
D O I
暂无
中图分类号
学科分类号
摘要
Residual dipolar couplings (RDCs) provide information about the dynamic average orientation of inter-nuclear vectors and amplitudes of motion up to milliseconds. They complement relaxation methods, especially on a time-scale window that we have called supra-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \tau _c $$\end{document} (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \tau _c $$\end{document} < supra-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \tau _c $$\end{document} < 50 μs). Here we present a robust approach called Self-Consistent RDC-based Model-free analysis (SCRM) that delivers RDC-based order parameters—independent of the details of the structure used for alignment tensor calculation—as well as the dynamic average orientation of the inter-nuclear vectors in the protein structure in a self-consistent manner. For ubiquitin, the SCRM analysis yields an average RDC-derived order parameter of the NH vectors \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \left\langle {S_{rdc}^2 } \right\rangle = 0.72 \pm 0.02 $$\end{document} compared to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \left\langle {S_{LS}^2 } \right\rangle $$\end{document} = 0.778 ± 0.003 for the Lipari–Szabo order parameters, indicating that the inclusion of the supra-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \tau _c $$\end{document} window increases the averaged amplitude of mobility observed in the sub-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \tau _c $$\end{document} window by about 34%. For the β-strand spanned by residues Lys48 to Leu50, an alternating pattern of backbone NH RDC order parameter \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ S_{rdc}^2 (NH) $$\end{document} = (0.59, 0.72, 0.59) was extracted. The backbone of Lys48, whose side chain is known to be involved in the poly-ubiquitylation process that leads to protein degradation, is very mobile on the supra-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \tau _c $$\end{document} time scale (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ S_{rdc}^2 (NH) $$\end{document} = 0.59 ± 0.03), while it is inconspicuous (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ S_{LS}^2 (NH) $$\end{document} = 0.82) on the sub-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \tau _c $$\end{document} as well as on μs–ms relaxation dispersion time scales. The results of this work differ from previous RDC dynamics studies of ubiquitin in the sense that the results are essentially independent of structural noise providing a much more robust assessment of dynamic effects that underlie the RDC data.
引用
收藏
页码:139 / 155
页数:16
相关论文
共 37 条
  • [21] ADSORPTION OF IONIC SURFACTANTS ON CONSTANT CHARGE SURFACES - ANALYSIS BASED ON A SELF-CONSISTENT FIELD LATTICE MODEL
    BOHMER, MR
    KOOPAL, LK
    LANGMUIR, 1992, 8 (06) : 1594 - 1602
  • [22] Analysis of the MOS transistor based on the self-consistent solution to the Schrodinger and Poisson equations and on the local mobility model
    Janik, T
    Majkusiak, B
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 1998, 45 (06) : 1263 - 1271
  • [23] Backbone Dynamics and Model-Free Analysis of the RecQ C-Terminal Domain of Bloom Syndrome Protein
    Yoo, Sooji
    Lee, Sungjin
    Park, Chin-Ju
    BULLETIN OF THE KOREAN CHEMICAL SOCIETY, 2018, 39 (11): : 1243 - 1247
  • [24] Analysis of the MOS transistor based on the self-consistent solution to the Schrodinger and Poisson equations and on the local mobility model
    Warsaw Univ of Technology, Warsaw, Poland
    IEEE Trans Electron Devices, 6 (1263-1271):
  • [25] Backbone Dynamics and Model-Free Analysis of N-terminal Domain of Human Replication Protein A 70
    Yoo, Sooji
    Park, Chin-Ju
    JOURNAL OF THE KOREAN MAGNETIC RESONANCE SOCIETY, 2018, 22 (01): : 18 - 25
  • [26] Spin-Spin Coupling Constant Based on Reference Interaction Site Model Self-Consistent Field with Constrained Spatial Electron Density
    Imamura, Kosuke
    Yokogawa, Daisuke
    Sato, Hirofumi
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2024, 15 (29): : 7473 - 7481
  • [27] Self-consistent Shaw optimized model potential: Application to the determination of structural and atomic transport properties of liquid alkali metals by molecular dynamics simulations
    Harchaoui, N.
    Hellal, S.
    Gasser, J. G.
    Grosdidier, B.
    PHILOSOPHICAL MAGAZINE, 2010, 90 (10) : 1307 - 1326
  • [28] Fast-time scale dynamics of outer membrane protein A by extended model-free analysis of NMR relaxation data
    Liang, Binyong
    Arora, Ashish
    Tamm, Lukas K.
    BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES, 2010, 1798 (02): : 68 - 76
  • [29] Self-consistent calculation of the optical emission spectrum of an argon capacitively coupled plasma based on the coupling of particle simulation with a collisional-radiative model
    Donko, Zoltan
    Tsankov, Tsanko, V
    Hartmann, Peter
    Jenina Arellano, Fatima
    Czarnetzki, Uwe
    Hamaguchi, Satoshi
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2024, 57 (37)
  • [30] Development of a deep-learning model for phase-separation structure of diblock copolymer based on self-consistent field analysis
    Hiraide, Kazuya
    Oya, Yutaka
    Hirayama, Kenta
    Endo, Katsuhiro
    Muramatsu, Mayu
    ADVANCED COMPOSITE MATERIALS, 2024, 33 (05) : 1026 - 1039