Critical objective function values in linear sum assignment problems

被引:0
|
作者
Ivan Belik
Kurt Jornsten
机构
[1] Norwegian School of Economics,
来源
关键词
Linear sum assignment problem; Lagrangian relaxation; optimal multiplier;
D O I
暂无
中图分类号
学科分类号
摘要
The linear sum assignment problem has been well studied in combinatorial optimization. Because of the integrality property, it is a linear programming problem with a variety of efficient algorithms to solve it. In the given research, we present a reformulation of the linear sum assignment problem and a Lagrangian relaxation algorithm for its reformulation. An important characteristic of the new Lagrangian relaxation method is that the optimal Lagrangian multiplier yields a critical bottleneck value. Lagrangian relaxation has only one Lagrangian multiplier, which can only take on a limited number of values, making the search for the optimal multiplier easy. The interpretation of the optimal Lagrangian parameter is that its value is equal to the price that must be paid for all objects in the problem to be assigned.
引用
收藏
页码:842 / 852
页数:10
相关论文
共 50 条
  • [41] 2 NON-LINEAR ASSIGNMENT PROBLEMS
    BEGHINPICAVET, M
    HANSEN, P
    RAIRO-RECHERCHE OPERATIONNELLE-OPERATIONS RESEARCH, 1982, 16 (03): : 263 - 276
  • [42] ON THE LINEAR WEIGHTED SUM METHOD FOR MULTI-OBJECTIVE OPTIMIZATION
    Stanimirovic, Ivan P.
    Zlatanovic, Milan Lj.
    Petkovic, Marko D.
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2011, 26 : 49 - 63
  • [43] Sensitivity analysis of objective function coefficients of the assignment problem
    Lin, Chi-Jen
    Wen, Ue-Pyng
    ASIA-PACIFIC JOURNAL OF OPERATIONAL RESEARCH, 2007, 24 (02) : 203 - 221
  • [44] Method of sequential modification of the objective function in the assignment problem
    Kuzovlev, D. I.
    Tizik, A. P.
    Treskov, Yu P.
    JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL, 2011, 50 (06) : 921 - 932
  • [45] Method of sequential modification of the objective function in the assignment problem
    D. I. Kuzovlev
    A. P. Tizik
    Yu. P. Treskov
    Journal of Computer and Systems Sciences International, 2011, 50 : 921 - 932
  • [46] Fast linear sum assignment with error-correction and no cost constraints
    Bougleux, Sebastien
    Gauzere, Benoit
    Blumenthal, David B.
    Brun, Luc
    PATTERN RECOGNITION LETTERS, 2020, 134 : 37 - 45
  • [47] On power values of sum of divisors function in arithmetic progressions
    Somu, Sai Teja
    Mishra, Vidyanshu
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2024, 55 (01): : 335 - 340
  • [48] Values of the Carmichael Function Equal to a Sum of Two Squares
    Banks, William D.
    Guloglu, Ahmet M.
    TURKISH JOURNAL OF MATHEMATICS, 2009, 33 (01) : 9 - 16
  • [49] A VARIABLE TRANSFORMATION METHOD FOR SOLVING LINEAR ABSOLUTE-VALUE OBJECTIVE-FUNCTION PROBLEMS WITH LINEAR CONSTRAINTS
    LU, LC
    WANG, Y
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1988, 21 (01) : 111 - 113
  • [50] On power values of sum of divisors function in arithmetic progressions
    Sai Teja Somu
    Vidyanshu Mishra
    Indian Journal of Pure and Applied Mathematics, 2024, 55 : 335 - 340