On the Implementation of the Eigenvalue Method for Limit Cycle Determination in Nonlinear Systems

被引:0
|
作者
Karl Heinz Kienitz
机构
[1] German Aerospace Center,Institute for Robotics and Mechatronics
来源
Nonlinear Dynamics | 2006年 / 45卷
关键词
describing functions; eigenvalues; limit cycles; Lyapunov equation; nonlinear systems; singular values; stability;
D O I
暂无
中图分类号
学科分类号
摘要
In many practical systems, limit cycles can be predicted with suitable precision by frequency domain methods using describing functions. Within such an approach, limit cycles can be predicted using the “eigenvalue method” [Somieski, G., Nonlinear Dynamics26(1), 2001, 3–22]. This contribution presents a novel and advantageous implementation of this method, using singular value instead of eigenvalue calculations, and enhancing computational efficiency by avoiding a so called “frequency iteration”.
引用
收藏
页码:25 / 30
页数:5
相关论文
共 50 条
  • [11] Determination of Limit Cycle by Hamiltonian Approach for Strongly Nonlinear Oscillators
    Xu, Lan
    He, Ji-Huan
    [J]. INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2010, 11 (12) : 1097 - 1101
  • [12] Controlling Limit Cycle Oscillation Amplitudes in Nonlinear Aeroelastic Systems
    Shukla, Himanshu
    Patil, Mayuresh J.
    [J]. JOURNAL OF AIRCRAFT, 2017, 54 (05): : 1921 - 1932
  • [13] Limit cycle oscillator in nonlinear systems with multiple time delays
    Hakimi, A. R.
    Azhdari, M.
    Binazadeh, T.
    [J]. CHAOS SOLITONS & FRACTALS, 2021, 153
  • [14] Prevention of limit cycle for nonlinear control systems with parametric uncertainties
    Wang Yuan-Jay
    Hsi Shu-, I
    Yen Ting-Ju
    Liang Chih-Chung
    [J]. PROCEEDINGS OF THE 26TH CHINESE CONTROL CONFERENCE, VOL 2, 2007, : 467 - +
  • [15] The existence of the exponentially stable limit cycle for a class of nonlinear systems
    Sun, Yeong-Jeu
    [J]. CHAOS SOLITONS & FRACTALS, 2009, 39 (05) : 2357 - 2362
  • [16] Implementation of a modified Marder-Weitzner method for solving nonlinear eigenvalue problems
    Wu, Yu-Jiang
    Wang, Yang
    Zeng, Min-Li
    Yang, Ai-Li
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 226 (01) : 166 - 176
  • [17] An optimal controller for reducing limit cycle behaviour in nonlinear systems with disturbances
    Dower, PM
    [J]. PROCEEDINGS OF THE 40TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-5, 2001, : 2752 - 2757
  • [18] Stabilization of a Limit Cycle for Discrete-Time Switched Nonlinear Systems
    Deaecto, Grace S.
    Astolfi, Alessandro
    [J]. IEEE CONTROL SYSTEMS LETTERS, 2024, 8 : 1253 - 1258
  • [19] A graphical technique for limit cycle analysis of uncertain nonlinear control systems
    Yuan-Jay Wang
    [J]. JOURNAL OF THE CHINESE INSTITUTE OF ENGINEERS, 2007, 30 (06) : 1023 - 1036
  • [20] Limit cycle prediction in multivariable nonlinear systems using genetic algorithms
    Rashidi, F
    Rashidi, M
    [J]. GENETIC AND EVOLUTIONARY COMPUTATION GECCO 2004 , PT 2, PROCEEDINGS, 2004, 3103 : 60 - 68