Almost Sure Convergence of the Kaczmarz Algorithm with Random Measurements

被引:0
|
作者
Xuemei Chen
Alexander M. Powell
机构
[1] Vanderbilt University,Department of Mathematics
关键词
Almost sure convergence; Convergence rates; Kaczmarz algorithm;
D O I
暂无
中图分类号
学科分类号
摘要
The Kaczmarz algorithm is an iterative method for reconstructing a signal x∈ℝd from an overcomplete collection of linear measurements yn=〈x,φn〉, n≥1. We prove quantitative bounds on the rate of almost sure exponential convergence in the Kaczmarz algorithm for suitable classes of random measurement vectors \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\{\varphi_{n}\}_{n=1}^{\infty} \subset {\mathbb {R}}^{d}$\end{document}. Refined convergence results are given for the special case when each φn has i.i.d. Gaussian entries and, more generally, when each φn/∥φn∥ is uniformly distributed on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{S}^{d-1}$\end{document}. This work on almost sure convergence complements the mean squared error analysis of Strohmer and Vershynin for randomized versions of the Kaczmarz algorithm.
引用
收藏
页码:1195 / 1214
页数:19
相关论文
共 50 条
  • [1] Almost Sure Convergence of the Kaczmarz Algorithm with Random Measurements
    Chen, Xuemei
    Powell, Alexander M.
    [J]. JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2012, 18 (06) : 1195 - 1214
  • [2] Almost sure convergence of some random series
    Grivaux, Sophie
    [J]. COMPTES RENDUS MATHEMATIQUE, 2010, 348 (3-4) : 155 - 159
  • [3] Almost sure convergence of random gossip algorithms
    Picci, Giorgio
    Taylor, Thomas
    [J]. PROCEEDINGS OF THE 46TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-14, 2007, : 3461 - +
  • [4] ALMOST SURE CONVERGENCE IN LINEAR SPACES OF RANDOM VARIABLES
    MUSHTARI, DK
    [J]. THEORY OF PROBILITY AND ITS APPLICATIONS,USSR, 1970, 15 (02): : 337 - &
  • [5] Almost Sure Convergence for the Maximum of Nonstationary Random Fields
    Pereira, Luisa
    Tan, Zhongquan
    [J]. JOURNAL OF THEORETICAL PROBABILITY, 2017, 30 (03) : 996 - 1013
  • [6] Almost sure convergence and decomposition of multivalued random processes
    Avgerinos, EP
    Papageorgiou, NS
    [J]. ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1999, 29 (02) : 401 - 435
  • [7] Almost Sure Convergence to Consensus in Markovian Random Graphs
    Matei, Ion
    Martins, Nuno
    Baras, John S.
    [J]. 47TH IEEE CONFERENCE ON DECISION AND CONTROL, 2008 (CDC 2008), 2008, : 3535 - 3540
  • [8] Almost sure convergence of urn models in a random environment
    Moler J.A.
    Plo F.
    San Miguel M.
    [J]. Journal of Mathematical Sciences, 2002, 111 (3) : 3566 - 3571
  • [9] OPTIMAL STOPPING AND ALMOST SURE CONVERGENCE OF RANDOM SEQUENCES
    ENGELBERT, A
    ENGELBERT, HJ
    [J]. ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1979, 48 (03): : 309 - 325
  • [10] Almost Sure Convergence for the Maximum of Nonstationary Random Fields
    Luísa Pereira
    Zhongquan Tan
    [J]. Journal of Theoretical Probability, 2017, 30 : 996 - 1013