Almost Sure Convergence of the Kaczmarz Algorithm with Random Measurements

被引:36
|
作者
Chen, Xuemei [1 ]
Powell, Alexander M. [1 ]
机构
[1] Vanderbilt Univ, Dept Math, Nashville, TN 37240 USA
基金
美国国家科学基金会;
关键词
Almost sure convergence; Convergence rates; Kaczmarz algorithm; EXPONENTIAL CONVERGENCE; HILBERT-SPACE; SYSTEMS;
D O I
10.1007/s00041-012-9237-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Kaczmarz algorithm is an iterative method for reconstructing a signal xaa"e (d) from an overcomplete collection of linear measurements y (n) =aOE (c) x,phi (n) >, na parts per thousand yen1. We prove quantitative bounds on the rate of almost sure exponential convergence in the Kaczmarz algorithm for suitable classes of random measurement vectors . Refined convergence results are given for the special case when each phi (n) has i.i.d. Gaussian entries and, more generally, when each phi (n) /ayen phi (n) ayen is uniformly distributed on . This work on almost sure convergence complements the mean squared error analysis of Strohmer and Vershynin for randomized versions of the Kaczmarz algorithm.
引用
收藏
页码:1195 / 1214
页数:20
相关论文
共 50 条
  • [1] Almost Sure Convergence of the Kaczmarz Algorithm with Random Measurements
    Xuemei Chen
    Alexander M. Powell
    [J]. Journal of Fourier Analysis and Applications, 2012, 18 : 1195 - 1214
  • [2] Almost sure convergence of some random series
    Grivaux, Sophie
    [J]. COMPTES RENDUS MATHEMATIQUE, 2010, 348 (3-4) : 155 - 159
  • [3] Almost sure convergence of random gossip algorithms
    Picci, Giorgio
    Taylor, Thomas
    [J]. PROCEEDINGS OF THE 46TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-14, 2007, : 3461 - +
  • [4] ALMOST SURE CONVERGENCE IN LINEAR SPACES OF RANDOM VARIABLES
    MUSHTARI, DK
    [J]. THEORY OF PROBILITY AND ITS APPLICATIONS,USSR, 1970, 15 (02): : 337 - &
  • [5] Almost Sure Convergence for the Maximum of Nonstationary Random Fields
    Pereira, Luisa
    Tan, Zhongquan
    [J]. JOURNAL OF THEORETICAL PROBABILITY, 2017, 30 (03) : 996 - 1013
  • [6] Almost sure convergence and decomposition of multivalued random processes
    Avgerinos, EP
    Papageorgiou, NS
    [J]. ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1999, 29 (02) : 401 - 435
  • [7] Almost Sure Convergence to Consensus in Markovian Random Graphs
    Matei, Ion
    Martins, Nuno
    Baras, John S.
    [J]. 47TH IEEE CONFERENCE ON DECISION AND CONTROL, 2008 (CDC 2008), 2008, : 3535 - 3540
  • [8] Almost sure convergence of urn models in a random environment
    Moler J.A.
    Plo F.
    San Miguel M.
    [J]. Journal of Mathematical Sciences, 2002, 111 (3) : 3566 - 3571
  • [9] OPTIMAL STOPPING AND ALMOST SURE CONVERGENCE OF RANDOM SEQUENCES
    ENGELBERT, A
    ENGELBERT, HJ
    [J]. ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1979, 48 (03): : 309 - 325
  • [10] Almost Sure Convergence for the Maximum of Nonstationary Random Fields
    Luísa Pereira
    Zhongquan Tan
    [J]. Journal of Theoretical Probability, 2017, 30 : 996 - 1013