On the continuous points of semi-continuous functions

被引:0
|
作者
Zengyan Si
Zhiwei Zhang
机构
[1] Henan Polytechnic University,School of Mathematics and Information Science
来源
The Journal of Analysis | 2021年 / 29卷
关键词
Lower Semi-continuous Functions; Upper Semi-continuous Functions; Continuous Points; 42B25; 47G10;
D O I
暂无
中图分类号
学科分类号
摘要
Let (X, d) be a complete metric space and E be a non-empty closed set in X. Suppose that f is a lower semi-continuous functions which maps E into R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}$$\end{document}. In this paper, we show that f has continuous points on E. Furthermore, we get the set of all such continuous points denote by Cf(E)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_f(E)$$\end{document} is dense on E. It should be pointed out that the same problem was also considered by professor Zaslavski (PanAmer Math J 17:1–10, 2007) by using a totally different argument.
引用
收藏
页码:297 / 302
页数:5
相关论文
共 50 条