The collocation method for mixed boundary value problems on domains with curved polygonal boundaries

被引:0
|
作者
J. Elschner
Y. Jeon
I.H. Sloan
E.P. Stephan
机构
[1] Weierstraß–Institut für Angewandte Analysis und Stochastik,
[2] Mohrenstr. 39,undefined
[3] D–10117 Berlin,undefined
[4] Germany,undefined
[5] Department of Mathematics,undefined
[6] Ajou University,undefined
[7] Suwon 441–749,undefined
[8] Korea,undefined
[9] School of Mathematics,undefined
[10] University of New South Wales,undefined
[11] Sydney 2062,undefined
[12] Australia,undefined
[13] Institut für Angewandte Mathematik,undefined
[14] Universität Hannover,undefined
[15] Postfach 6009,undefined
[16] D-30060 Hannover,undefined
[17] Germany,undefined
来源
Numerische Mathematik | 1997年 / 76卷
关键词
Key words: trigonometric collocation method, mixed boundary value problem for the Laplacian, polygonal domains Mathematics Subject Classification (1991): 65 N 38, 65 N 35, 65 R 20;
D O I
暂无
中图分类号
学科分类号
摘要
We consider an indirect boundary integral equation formulation for the mixed Dirichlet-Neumann boundary value problem for the Laplace equation on a plane domain with a polygonal boundary. The resulting system of integral equations is solved by a collocation method which uses a mesh grading transformation and a cosine approximating space. The mesh grading transformation method yields fast convergence of the collocation solution by smoothing the singularities of the exact solution. A complete stability and solvability analysis of the transformed integral equations is given by use of a Mellin transform technique, in a setting in which each arc of the polygon has associated with it a periodic Sobolev space.
引用
收藏
页码:355 / 381
页数:26
相关论文
共 50 条
  • [21] Verified computations to semilinear elliptic boundary value problems on arbitrary polygonal domains
    Takayasu, Akitoshi
    Liu, Xuefeng
    Oishi, Shin'ichi
    IEICE NONLINEAR THEORY AND ITS APPLICATIONS, 2013, 4 (01): : 34 - 61
  • [22] COLLOCATION SOLVER FOR MIXED ORDER SYSTEMS OF BOUNDARY-VALUE PROBLEMS
    ASCHER, U
    CHRISTIANSEN, J
    RUSSELL, RD
    MATHEMATICS OF COMPUTATION, 1979, 33 (146) : 659 - 679
  • [23] A GENERALIZED-METHOD OF MAPPINGS IN STATIC BOUNDARY-VALUE-PROBLEMS FOR DOMAINS WITH ANALYTIC BOUNDARIES
    APELTSIN, VF
    USSR COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 1989, 29 (02): : 119 - 128
  • [24] CONVERGENCE OF THE COLLOCATION METHOD FOR ELLIPTIC BOUNDARY-VALUE PROBLEMS
    HEINRICHS, W
    NUMERISCHE MATHEMATIK, 1989, 54 (06) : 619 - 637
  • [25] THE BARYCENTRIC RATIONAL INTERPOLATION COLLOCATION METHOD FOR BOUNDARY VALUE PROBLEMS
    Tian, Dan
    He, Ji-Huan
    THERMAL SCIENCE, 2018, 22 (04): : 1773 - 1779
  • [26] Weighted radial basis collocation method for boundary value problems
    Hu, H. Y.
    Chen, J. S.
    Hu, W.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2007, 69 (13) : 2736 - 2757
  • [27] A gradient reproducing kernel collocation method for boundary value problems
    Chi, Sheng-Wei
    Chen, Jiun-Shyan
    Hu, Hsin-Yun
    Yang, Judy P.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2013, 93 (13) : 1381 - 1402
  • [28] SOME MIXED BOUNDARY VALUE PROBLEMS FOR REGIONS WITH SPHERICAL BOUNDARIES
    SRIVASTAV, RP
    NARAIN, P
    JOURNAL OF MATHEMATICS AND MECHANICS, 1965, 14 (04): : 613 - +
  • [29] INTERFACE AND MIXED BOUNDARY VALUE PROBLEMS ON η-DIMENSIONAL POLYHEDRAL DOMAINS
    Bacuta, Constantin
    Mazzucato, Anna L.
    Nistor, Victor
    Zikatanov, Ludmil T.
    DOCUMENTA MATHEMATICA, 2010, 15 : 687 - 745
  • [30] Mixed Boundary Value Problems for the Elasticity System in Exterior Domains
    Matevossian, Hovik A.
    MATHEMATICAL AND COMPUTATIONAL APPLICATIONS, 2019, 24 (02)