Three-Mode Nonlinear Bogoliubov Transformations

被引:0
|
作者
Gang Ren
Tong-Qiang Song
机构
[1] Ningbo University,Department of Physics
关键词
Coordinate-dependent three-mode nonlinear Bogoliubov transformations; Three-mode squeezed states;
D O I
暂无
中图分类号
学科分类号
摘要
We introduce the three-mode nonlinear Bogoliubov transformations based on the work of Siena et al. (Phys. Rev. A 64:063803, 2001) and Ying Wu (Phys. Rev. A 66:025801, 2002) about nonlinear Bogoliubov transformations. We show that three-mode nonlinear Bogoliubov transformations can be constructed by the combination of two unitary transformations, a coordinate-dependent displacement followed by the standard squeezed transformation. Such decomposition turns all the nonlinear canonic coordinate-dependent Bogoliubov transformations into essentially linear problems as we shall prove and hence greatly facilitate calculations of the properties and the quantities related to the nonlinear transformations.
引用
收藏
页码:1147 / 1155
页数:8
相关论文
共 50 条
  • [21] Three-mode orthomax rotation
    Henk A. L. Kiers
    Psychometrika, 1997, 62 : 579 - 598
  • [22] Three-mode orthomax rotation
    Kiers, HAL
    PSYCHOMETRIKA, 1997, 62 (04) : 579 - 598
  • [23] Development of a Nonlinear Model Predictive Control-Based Nonlinear Three-Mode Controller for a Nonlinear System
    Kumar, Suraj Suresh
    Indiran, Thirunavukkarasu
    Itty, George Vadakkekkara
    Shettigar, J. Prajwal
    Paul, Tinu Valsa
    ACS OMEGA, 2022, : 42418 - 42437
  • [24] Study of three-mode parametric instability
    Liang, Fengchao
    Zhao, Chunnong
    Gras, Slawomir
    Ju, Li
    Blair, D. G.
    8TH EDOARDO AMALDI CONFERENCE ON GRAVITATIONAL WAVES, 2010, 228
  • [25] Observation of three-mode parametric instability
    Chen, X.
    Zhao, C.
    Danilishin, S.
    Ju, L.
    Blair, D.
    Wang, H.
    Vyatchanin, S. P.
    Molinelli, C.
    Kuhn, A.
    Gras, S.
    Briant, T.
    Cohadon, P. -F.
    Heidmann, A.
    Roch-Jeune, I.
    Flaminio, R.
    Michel, C.
    Pinard, L.
    PHYSICAL REVIEW A, 2015, 91 (03):
  • [26] BASICS OF THREE-MODE CONTROLLERS.
    Jury, Floyd D.
    Power, 1975, 119 (05): : 61 - 63
  • [27] Nonlinear three-mode interaction and drift-wave turbulence in a tokamak edge plasma
    Batista, AM
    Caldas, IL
    Lopes, SR
    Viana, RL
    Horton, W
    Morrison, PJ
    PHYSICS OF PLASMAS, 2006, 13 (04)
  • [28] Nonlinear fluid closure: Three-mode slab ion temperature gradient problem with diffusion
    Holod, I
    Weiland, J
    Zagorodny, A
    PHYSICS OF PLASMAS, 2002, 9 (04) : 1217 - 1220
  • [29] Squeezing transformation of three-mode entangled state
    Qian, XQ
    Song, TQ
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2005, 44 (05) : 911 - 916
  • [30] Three-mode analysis of multimode covariance matrices
    Kroonenberg, PM
    Oort, FJ
    BRITISH JOURNAL OF MATHEMATICAL & STATISTICAL PSYCHOLOGY, 2003, 56 : 305 - 335