Variational analysis of a mesoscale model for bilayer membranes

被引:0
|
作者
Luca Lussardi
Mark A. Peletier
Matthias Röger
机构
[1] Università Cattolica del Sacro Cuore,Dipartimento di Matematica e Fisica “N. Tartaglia”
[2] Eindhoven University of Technology,Department of Mathematics and Computer Science, Institute for Complex Molecular Systems (ICMS)
[3] Technische Universität Dortmund,Fakultät für Mathematik
来源
Journal of Fixed Point Theory and Applications | 2014年 / 15卷
关键词
49J45; 49Q20; 74K15; 92C05; Lipid bilayers; Monge–Kantorovich distance; curvature functionals; Gamma-convergence;
D O I
暂无
中图分类号
学科分类号
摘要
We present an asymptotic analysis of a mesoscale energy for bilayer membranes that has been introduced and analyzed in two space dimensions by the second and third authors [Arch. Ration. Mech. Anal. 193 (2009), 475–537]. The energy is both nonlocal and nonconvex. It combines a surface area and a Monge–Kantorovich-distance term, leading to a competition between preferences for maximally concentrated and maximally dispersed configurations. Here we extend key results of our previous analysis to the three-dimensional case. First we prove a general lower estimate and formally identify a curvature energy in the zerothickness limit. Secondly we construct a recovery sequence and prove a matching upper-bound estimate.
引用
收藏
页码:217 / 240
页数:23
相关论文
共 50 条