Shooting methods for a PT-symmetric periodic eigenvalue problem

被引:0
|
作者
Lidia Aceto
Cecilia Magherini
Marco Marletta
机构
[1] Università di Pisa,Dipartimento di Matematica Applicata “U.Dini”
[2] Cardiff University,School of Mathematics
来源
Numerical Algorithms | 2011年 / 57卷
关键词
Shooting methods for eigenvalues; One-step schemes; Periodic eigenvalue problems; PT-symmetric; Interior singularity; 65L15; 65L10; 34L15; 34L16;
D O I
暂无
中图分类号
学科分类号
摘要
We present a rigorous analysis of the performance of some one-step discretization schemes for a class of PT-symmetric singular boundary eigenvalue problem which encompasses a number of different problems whose investigation has been inspired by the 2003 article of Benilov et al. (J Fluid Mech 497:201–224, 2003). These discretization schemes are analyzed as initial value problems rather than as discrete boundary problems, since this is the setting which ties in most naturally with the formulation of the problem which one is forced to adopt due to the presence of an interior singularity. We also devise and analyze a variable step scheme for dealing with the singular points. Numerical results show better agreement between our results and those obtained from small-ϵ asymptotics than has been shown in results presented hitherto.
引用
收藏
页码:513 / 536
页数:23
相关论文
共 50 条
  • [31] PT-symmetric electronics
    Schindler, J.
    Lin, Z.
    Lee, J. M.
    Ramezani, H.
    Ellis, F. M.
    Kottos, T.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (44)
  • [32] PT-Symmetric Acoustics
    Zhu, Xuefeng
    Ramezani, Hamidreza
    Shi, Chengzhi
    Zhu, Jie
    Zhang, Xiang
    PHYSICAL REVIEW X, 2014, 4 (03):
  • [33] PT-symmetric kinks
    Dutra, A. de Souza
    dos Santos, V. G. C. S.
    de Faria, A. C. Amaro, Jr.
    PHYSICAL REVIEW D, 2007, 75 (12):
  • [34] Eigenvalue structure of a Bose-Einstein condensate in a PT-symmetric double well
    Dast, Dennis
    Haag, Daniel
    Cartarius, Holger
    Main, Joerg
    Wunner, Guenter
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2013, 46 (37)
  • [35] Cusp bifurcation in the eigenvalue spectrum of PT-symmetric Bose-Einstein condensates
    Dizdarevic, Daniel
    Dast, Dennis
    Haag, Daniel
    Main, Joerg
    Cartarius, Holger
    Wunner, Guenter
    PHYSICAL REVIEW A, 2015, 91 (03):
  • [36] Solitons in PT-symmetric optical lattices with spatially periodic modulation of nonlinearity
    He, Yingji
    Zhu, Xing
    Mihalache, Dumitru
    Liu, Jinglin
    Chen, Zhanxu
    OPTICS COMMUNICATIONS, 2012, 285 (15) : 3320 - 3324
  • [37] A completely solvable new PT-symmetric periodic potential with real energies
    Sinha, Anjana
    Roychoudhury, Rajkumar
    PRAMANA-JOURNAL OF PHYSICS, 2023, 97 (03):
  • [38] PT-symmetric dimers with time-periodic gain/loss function
    Psiachos, Demetra
    Lazarides, Nikos
    Tsironis, G. P.
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2014, 117 (02): : 663 - 672
  • [39] Nonlocal solitons in dual-periodic PT-symmetric optical lattices
    Li, Huagang
    Jiang, Xiujuan
    Zhu, Xing
    Shi, Zhiwei
    PHYSICAL REVIEW A, 2012, 86 (02):
  • [40] Nonlocal gap solitons in PT-symmetric periodic potentials with defocusing nonlinearity
    Jisha, Chandroth P.
    Alberucci, Alessandro
    Brazhnyi, Valeriy A.
    Assanto, Gaetano
    PHYSICAL REVIEW A, 2014, 89 (01):