Shooting methods for a PT-symmetric periodic eigenvalue problem

被引:0
|
作者
Lidia Aceto
Cecilia Magherini
Marco Marletta
机构
[1] Università di Pisa,Dipartimento di Matematica Applicata “U.Dini”
[2] Cardiff University,School of Mathematics
来源
Numerical Algorithms | 2011年 / 57卷
关键词
Shooting methods for eigenvalues; One-step schemes; Periodic eigenvalue problems; PT-symmetric; Interior singularity; 65L15; 65L10; 34L15; 34L16;
D O I
暂无
中图分类号
学科分类号
摘要
We present a rigorous analysis of the performance of some one-step discretization schemes for a class of PT-symmetric singular boundary eigenvalue problem which encompasses a number of different problems whose investigation has been inspired by the 2003 article of Benilov et al. (J Fluid Mech 497:201–224, 2003). These discretization schemes are analyzed as initial value problems rather than as discrete boundary problems, since this is the setting which ties in most naturally with the formulation of the problem which one is forced to adopt due to the presence of an interior singularity. We also devise and analyze a variable step scheme for dealing with the singular points. Numerical results show better agreement between our results and those obtained from small-ϵ asymptotics than has been shown in results presented hitherto.
引用
收藏
页码:513 / 536
页数:23
相关论文
共 50 条
  • [1] Shooting methods for a PT-symmetric periodic eigenvalue problem
    Aceto, Lidia
    Magherini, Cecilia
    Marletta, Marco
    NUMERICAL ALGORITHMS, 2011, 57 (04) : 513 - 536
  • [2] Complex WKB analysis of a PT-symmetric eigenvalue problem
    Sorrell, Mark
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (33) : 10319 - 10335
  • [3] EIGENVALUE COLLISION FOR PT-SYMMETRIC WAVEGUIDE
    Borisov, Denis
    ACTA POLYTECHNICA, 2014, 54 (02) : 93 - 100
  • [4] PT-Symmetric Periodic Optical Potentials
    Makris, K. G.
    El-Ganainy, R.
    Christodoulides, D. N.
    Musslimani, Z. H.
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2011, 50 (04) : 1019 - 1041
  • [5] Nonlinear eigenvalue problems and PT-symmetric quantum mechanics
    Bender, Carl M.
    FIFTH SYMPOSIUM ON PROSPECTS IN THE PHYSICS OF DISCRETE SYMMETRIES, 2017, 873
  • [6] Contrasting eigenvalue and singular-value spectra for lasing and antilasing in a PT-symmetric periodic structure
    Ge, Li
    Feng, Liang
    PHYSICAL REVIEW A, 2017, 95 (01)
  • [7] THE FLOQUET METHOD FOR PT-SYMMETRIC PERIODIC POTENTIALS
    Jones, H. F.
    ACTA POLYTECHNICA, 2014, 54 (02) : 122 - 123
  • [8] Switching in the PT-symmetric nonlinear periodic structures
    Shestakov, Pavel Yu
    Marchenko, Vladimir F.
    Komissarova, Maria, V
    NONLINEAR OPTICS AND APPLICATIONS XI, 2019, 11026
  • [9] Bragg solitons in nonlinear PT-symmetric periodic potentials
    Miri, Mohammad-Ali
    Aceves, Alejandro B.
    Kottos, Tsampikos
    Kovanis, Vassilios
    Christodoulides, Demetrios N.
    PHYSICAL REVIEW A, 2012, 86 (03):
  • [10] Unidirectional Invisibility Induced by PT-Symmetric Periodic Structures
    Lin, Zin
    Ramezani, Hamidreza
    Eichelkraut, Toni
    Kottos, Tsampikos
    Cao, Hui
    Christodoulides, Demetrios N.
    PHYSICAL REVIEW LETTERS, 2011, 106 (21)