Multi-parametric and multi-regional histogram analysis of MRI: modality integration reveals imaging phenotypes of glioblastoma

被引:0
|
作者
Chao Li
Shuo Wang
Angela Serra
Turid Torheim
Jiun-Lin Yan
Natalie R. Boonzaier
Yuan Huang
Tomasz Matys
Mary A. McLean
Florian Markowetz
Stephen J. Price
机构
[1] University of Cambridge,Cambridge Brain Tumour Imaging Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences
[2] Shanghai Jiao Tong University School of Medicine,Department of Neurosurgery, Shanghai General Hospital (originally named “Shanghai First People’s Hospital”)
[3] University of Cambridge,The Centre for Mathematical Imaging in Healthcare, Department of Pure Mathematics and Mathematical Statistics
[4] University of Cambridge,Department of Radiology
[5] Tampere University,Faculty of Medicine and Health Technology
[6] Institute of Biosciences and Medical Technologies (BioMediTech),NeuRoNe Lab, DISA
[7] University of Salerno,MIS
[8] University of Cambridge,Cancer Research UK Cambridge Institute
[9] CRUK & EPSRC Cancer Imaging Centre in Cambridge and Manchester,Department of Neurosurgery
[10] Chang Gung Memorial Hospital,Developmental Imaging and Biophysics Section, Great Ormond Street Institute of Child Health
[11] Chang Gung University College of Medicine,Wolfson Brain Imaging Centre, Department of Clinical Neurosciences
[12] University College London,undefined
[13] University of Cambridge,undefined
来源
European Radiology | 2019年 / 29卷
关键词
Glioblastoma; Magnetic resonance imaging; Machine learning; Survival analysis; Prognosis;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:4718 / 4729
页数:11
相关论文
共 50 条
  • [41] DISTINGUISHING PROGRESSION FROM PSEUDOPROGRESSION IN GLIOBLASTOMA: COMBINED USE OF 18F-FLUCICLOVINE PET AND MULTI-PARAMETRIC MRI
    Nabavizadeh, Ali
    Bagley, Stephen
    Ware, Jeffrey B.
    Doot, Robert K.
    Young, Anthony
    Ghodasara, Satyam
    Zhao, Chao
    Anderson, Hannah
    Schubert, Erin
    Carpenter, Erica L.
    Till, Jacob
    Henderson, Fraser, Jr.
    Pantel, Austin R.
    Chen, Isaac
    Lee, John Yk
    Amankulor, Nduka
    O'Rourke, Donald
    Desai, Arati
    Nasrallah, MacLean
    Brem, Steven
    NEURO-ONCOLOGY, 2022, 24 : 173 - 173
  • [42] Volume of high-risk intratumoral subregions at multi-parametric MR imaging predicts overall survival and complements molecular analysis of glioblastoma
    Cui, Yi
    Ren, Shangjie
    Tha, Khin Khin
    Wu, Jia
    Shirato, Hiroki
    Li, Ruijiang
    EUROPEAN RADIOLOGY, 2017, 27 (09) : 3583 - 3592
  • [43] RADIOGENOMIC SIGNATURES OF DRIVER GENES IN NEWLY DIAGNOSED GLIOBLASTOMA PATIENTS BASED ON PRE-OPERATIVE MULTI-PARAMETRIC MRI
    Kazerooni, Anahita Fathi
    Toorens, Erik
    Bakas, Spyridon
    Akbari, Hamed
    Sako, Chiharu
    Mamourian, Elizabeth
    Ha, Sung Min
    Thakur, Nina
    Rosado, Jennifer-Marie
    Bagley, Stephen
    Ganguly, Tapan
    MacLean, Nasrallah
    Davatzikos, Christos
    NEURO-ONCOLOGY, 2020, 22 : 156 - 157
  • [44] Volume of high-risk intratumoral subregions at multi-parametric MR imaging predicts overall survival and complements molecular analysis of glioblastoma
    Yi Cui
    Shangjie Ren
    Khin Khin Tha
    Jia Wu
    Hiroki Shirato
    Ruijiang Li
    European Radiology, 2017, 27 : 3583 - 3592
  • [45] Non-invasive prediction of molecular subtype in glioblastoma using multi-parametric magnetic resonance imaging pattern analysis and machine learning
    Pisapia, Jared
    Macyszyn, Lukasz
    Akbari, Hamed
    Da, Xiao
    Attiah, Mark
    Bi, Yingtao
    Pal, Sharmistha
    Davaluri, Ramana
    Roccograndi, Laura
    Dahmane, Nadia
    Wolf, Ronald
    O'Rourke, Donald M.
    Davatzikos, Christos
    CANCER RESEARCH, 2015, 75
  • [46] Predicting peritumoral glioblastoma infiltration and subsequent recurrence using deep-learning-based analysis of multi-parametric magnetic resonance imaging
    Kwak, Sunwoo
    Akbari, Hamed
    Garcia, Jose A.
    Mohan, Suyash
    Dicker, Yehuda
    Sako, Chiharu
    Matsumoto, Yuji
    Nasrallah, MacLean P.
    Shalaby, Mahmoud
    O'Rourke, Donald M.
    Shinohara, Russel T.
    Liu, Fang
    Badve, Chaitra
    Barnholtz-Sloan, Jill S.
    Sloan, Andrew E.
    Lee, Matthew
    Jain, Rajan
    Cepeda, Santiago
    Chakravarti, Arnab
    Palmer, Joshua D.
    Dicker, Adam P.
    Shukla, Gaurav
    Flanders, Adam E.
    Shi, Wenyin
    Woodworth, Graeme F.
    Davatzikos, Christos
    Journal of Medical Imaging, 2024, 11 (05)
  • [47] A CAD system based on multi-parametric analysis for cancer prostate detection on DCE-MRI
    Mazzetti, Simone
    De Luca, Massimo
    Bracco, Christian
    Vignati, Anna
    Giannini, Valentina
    Stasi, Michele
    Russo, Filippo
    Armando, Enrico
    Agliozzo, Silvano
    Regge, Daniele
    MEDICAL IMAGING 2011: COMPUTER-AIDED DIAGNOSIS, 2011, 7963
  • [48] Evaluation of intensity-based deformable registration of multi-parametric MRI for radiomics analysis of the prostate
    Alley, Stephanie
    Fedorov, Andrey
    Menard, Cynthia
    Kadoury, Samuel
    MEDICAL IMAGING 2020: BIOMEDICAL APPLICATIONS IN MOLECULAR, STRUCTURAL, AND FUNCTIONAL IMAGING, 2021, 11317
  • [49] Deriving stable multi-parametric MRI radiomic signatures in the presence of inter-scanner variations: survival prediction of glioblastoma via imaging pattern analysis and machine learning techniques
    Rathore, Saima
    Bakas, Spyridon
    Akbari, Hamed
    Shukla, Gaurav
    Rozycki, Martin
    Davatzikos, Christos
    MEDICAL IMAGING 2018: COMPUTER-AIDED DIAGNOSIS, 2018, 10575
  • [50] Modality-Specific Information Disentanglement From Multi-Parametric MRI for Breast Tumor Segmentation and Computer-Aided Diagnosis
    Chen, Qianqian
    Zhang, Jiadong
    Meng, Runqi
    Zhou, Lei
    Li, Zhenhui
    Feng, Qianjin
    Shen, Dinggang
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2024, 43 (05) : 1958 - 1971