Fluorescence and Raman Spectroscopy of Doped Nanodiamonds

被引:0
|
作者
O. S. Kudryavtsev
A. A. Khomich
V. S. Sedov
E. A. Ekimov
I. I. Vlasov
机构
[1] A. M. Prokhorov General Physics Institute,
[2] Russian Academy of Sciences,undefined
[3] National Research Nuclear University MEPhI,undefined
[4] V. A. Kotelnikov Institute of Radio Engineering and Electronics,undefined
[5] Russian Academy of Sciences,undefined
[6] L. F. Vereshchagin Institute for High Pressure Physics,undefined
[7] Russian Academy of Sciences,undefined
来源
关键词
diamond nanoparticle; synthesis; Raman scattering; fl uorescence; graphitization;
D O I
暂无
中图分类号
学科分类号
摘要
Raman and fluorescence spectroscopic techniques were used to study doped nanodiamonds synthesized at high pressure and high temperature (HPHT technique) and by chemical vapor deposition from the gas phase (CVD technique). For the CVD diamonds, a hundred-fold increase in fluorescence intensity of the silicon-vacancy centers normalized to the volume of the probe material was observed with an increase in synthesized diamond particle diameter from 150 to 300 nm. Graphitization temperature upon heating in the air significantly lower than for detonation nanodiamonds was found for the boron-doped HPHT nanodiamonds.
引用
收藏
页码:295 / 299
页数:4
相关论文
共 50 条
  • [31] Single-particle Observation of Detonation Nanodiamonds by Tip-enhanced Raman Spectroscopy
    Itasaka, Hiroki
    Liu, Ming
    Kojima, Ryota
    Yoshikawa, Taro
    Nishikawa, Masahiro
    Nishi, Masayuki
    Hamamoto, Koichi
    [J]. CHEMISTRY LETTERS, 2021, 50 (06) : 1188 - 1190
  • [32] THE SOURCE OF THE SURFACE FLUORESCENCE OF NANODIAMONDS
    Vervald, Alexey
    Kudryavtsev, Oleg
    Lachko, Andrey
    Burikov, Sergey
    Shenderova, Olga
    Vlasov, Igor
    Dolenko, Tatiana
    [J]. 11TH INTERNATIONAL CONFERENCE ON NANOMATERIALS - RESEARCH & APPLICATION (NANOCON 2019), 2020, : 323 - 329
  • [33] Modification of nanodiamonds for fluorescence bioimaging
    Fryer, Claudia
    Murray, Patricia
    Zhang, Haifei
    [J]. RSC ADVANCES, 2024, 14 (07) : 4633 - 4644
  • [34] Raman spectroscopy on electrochemically doped carbon nanotubes
    Rafailov, PM
    Thomsen, C
    [J]. JOURNAL OF OPTOELECTRONICS AND ADVANCED MATERIALS, 2005, 7 (01): : 461 - 464
  • [35] Crystallization of Silica Xerogels: A Study by Raman and Fluorescence Spectroscopy
    A. Bouajaj
    M. Ferrari
    M. Montagna
    [J]. Journal of Sol-Gel Science and Technology, 1997, 8 : 391 - 395
  • [36] Combined fiber probe for fluorescence lifetime and Raman spectroscopy
    Dochow, Sebastian
    Ma, Dinglong
    Latka, Ines
    Bocklitz, Thomas
    Hartl, Brad
    Bec, Julien
    Fatakdawala, Hussain
    Marple, Eric
    Urmey, Kirk
    Wachsmann-Hogiu, Sebastian
    Schmitt, Michael
    Marcu, Laura
    Popp, Juergen
    [J]. ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2015, 407 (27) : 8291 - 8301
  • [37] Combined fiber probe for fluorescence lifetime and Raman spectroscopy
    Sebastian Dochow
    Dinglong Ma
    Ines Latka
    Thomas Bocklitz
    Brad Hartl
    Julien Bec
    Hussain Fatakdawala
    Eric Marple
    Kirk Urmey
    Sebastian Wachsmann-Hogiu
    Michael Schmitt
    Laura Marcu
    Jürgen Popp
    [J]. Analytical and Bioanalytical Chemistry, 2015, 407 : 8291 - 8301
  • [38] Detecting organics with Deep UV Raman and fluorescence spectroscopy
    Ellie Hara
    [J]. Nature Reviews Earth & Environment, 2022, 3 : 164 - 164
  • [39] Confocal fluorescence and Raman spectroscopy of single nanoparticles.
    Basché, T
    Mews, A
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2001, 221 : U235 - U235
  • [40] Refraction, fluorescence and Raman spectroscopy of normal and glycated hemoglobin
    Lazareva, Ekaterina N.
    Zyubin, Andrey. Y.
    Samusev, Ilya G.
    Slezhkin, Vasily A.
    Kochubey, Vyacheslav I.
    Tuchin, Valery V.
    [J]. BIOPHOTONICS: PHOTONIC SOLUTIONS FOR BETTER HEALTH CARE VI, 2018, 10685