We prove partial regularity of vector-valued minimizers u of the polyconvex variational integral \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\int \left(f\left(x,u,{\cal M}\left(Du\right) \right) + g\left(x,u\right) \right) dx$\end{document}, where \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}${\cal M}\left(Du\right) $\end{document} stands for the minors of the gradient Du. For the integrand, we assume f to be a continuous function of class C2, strictly convex and of polynomial growth in the minors, and g to be a bounded Carathéodory function. We do not employ a Caccioppoli inequality.