Partial regularity of minimizers of polyconvex variational integrals

被引:0
|
作者
Christoph Hamburger
机构
[1] Private address,
关键词
Continuous Function; Variational Integral; Polynomial Growth; Partial Regularity; Caccioppoli Inequality;
D O I
暂无
中图分类号
学科分类号
摘要
We prove partial regularity of vector-valued minimizers u of the polyconvex variational integral \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\int \left(f\left(x,u,{\cal M}\left(Du\right) \right) + g\left(x,u\right) \right) dx$\end{document}, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\cal M}\left(Du\right) $\end{document} stands for the minors of the gradient Du. For the integrand, we assume f to be a continuous function of class C2, strictly convex and of polynomial growth in the minors, and g to be a bounded Carathéodory function. We do not employ a Caccioppoli inequality.
引用
收藏
页码:221 / 241
页数:20
相关论文
共 50 条